1
0
mirror of http://git.whoc.org.uk/git/password-manager.git synced 2024-11-14 19:19:02 +01:00
password-manager-mirror/frontend/beta/js/Clipperz/Crypto/BigInt_scoped.js
2011-10-06 01:36:10 +01:00

1647 lines
48 KiB
JavaScript

/*
Copyright 2008-2011 Clipperz Srl
This file is part of Clipperz Community Edition.
Clipperz Community Edition is an online password manager.
For further information about its features and functionalities please
refer to http://www.clipperz.com.
* Clipperz Community Edition is free software: you can redistribute
it and/or modify it under the terms of the GNU Affero General Public
License as published by the Free Software Foundation, either version
3 of the License, or (at your option) any later version.
* Clipperz Community Edition is distributed in the hope that it will
be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Affero General Public License for more details.
* You should have received a copy of the GNU Affero General Public
License along with Clipperz Community Edition. If not, see
<http://www.gnu.org/licenses/>.
*/
if (typeof(Clipperz) == 'undefined') { Clipperz = {}; }
if (typeof(Clipperz.Crypto) == 'undefined') { Clipperz.Crypto = {}; }
if (typeof(Leemon) == 'undefined') { Leemon = {}; }
if (typeof(Baird.Crypto) == 'undefined') { Baird.Crypto = {}; }
if (typeof(Baird.Crypto.BigInt) == 'undefined') { Baird.Crypto.BigInt = {}; }
//#############################################################################
// Downloaded on March 05, 2007 from http://www.leemon.com/crypto/BigInt.js
//#############################################################################
////////////////////////////////////////////////////////////////////////////////////////
// Big Integer Library v. 5.0
// Created 2000, last modified 2006
// Leemon Baird
// www.leemon.com
//
// This file is public domain. You can use it for any purpose without restriction.
// I do not guarantee that it is correct, so use it at your own risk. If you use
// it for something interesting, I'd appreciate hearing about it. If you find
// any bugs or make any improvements, I'd appreciate hearing about those too.
// It would also be nice if my name and address were left in the comments.
// But none of that is required.
//
// This code defines a bigInt library for arbitrary-precision integers.
// A bigInt is an array of integers storing the value in chunks of bpe bits,
// little endian (buff[0] is the least significant word).
// Negative bigInts are stored two's complement.
// Some functions assume their parameters have at least one leading zero element.
// Functions with an underscore at the end of the name have unpredictable behavior in case of overflow,
// so the caller must make sure overflow won't happen.
// For each function where a parameter is modified, that same
// variable must not be used as another argument too.
// So, you cannot square x by doing multMod_(x,x,n).
// You must use squareMod_(x,n) instead, or do y=dup(x); multMod_(x,y,n).
//
// These functions are designed to avoid frequent dynamic memory allocation in the inner loop.
// For most functions, if it needs a BigInt as a local variable it will actually use
// a global, and will only allocate to it when it's not the right size. This ensures
// that when a function is called repeatedly with same-sized parameters, it only allocates
// memory on the first call.
//
// Note that for cryptographic purposes, the calls to Math.random() must
// be replaced with calls to a better pseudorandom number generator.
//
// In the following, "bigInt" means a bigInt with at least one leading zero element,
// and "integer" means a nonnegative integer less than radix. In some cases, integer
// can be negative. Negative bigInts are 2s complement.
//
// The following functions do not modify their inputs, but dynamically allocate memory every time they are called:
//
// function bigInt2str(x,base) //convert a bigInt into a string in a given base, from base 2 up to base 95
// function dup(x) //returns a copy of bigInt x
// function findPrimes(n) //return array of all primes less than integer n
// function int2bigInt(t,n,m) //convert integer t to a bigInt with at least n bits and m array elements
// function str2bigInt(s,b,n,m) //convert string s in base b to a bigInt with at least n bits and m array elements
// function trim(x,k) //return a copy of x with exactly k leading zero elements
//
// The following functions do not modify their inputs, so there is never a problem with the result being too big:
//
// function bitSize(x) //returns how many bits long the bigInt x is, not counting leading zeros
// function equals(x,y) //is the bigInt x equal to the bigint y?
// function equalsInt(x,y) //is bigint x equal to integer y?
// function greater(x,y) //is x>y? (x and y are nonnegative bigInts)
// function greaterShift(x,y,shift)//is (x <<(shift*bpe)) > y?
// function isZero(x) //is the bigInt x equal to zero?
// function millerRabin(x,b) //does one round of Miller-Rabin base integer b say that bigInt x is possibly prime (as opposed to definitely composite)?
// function modInt(x,n) //return x mod n for bigInt x and integer n.
// function negative(x) //is bigInt x negative?
//
// The following functions do not modify their inputs, but allocate memory and call functions with underscores
//
// function add(x,y) //return (x+y) for bigInts x and y.
// function addInt(x,n) //return (x+n) where x is a bigInt and n is an integer.
// function expand(x,n) //return a copy of x with at least n elements, adding leading zeros if needed
// function inverseMod(x,n) //return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null
// function mod(x,n) //return a new bigInt equal to (x mod n) for bigInts x and n.
// function mult(x,y) //return x*y for bigInts x and y. This is faster when y<x.
// function multMod(x,y,n) //return (x*y mod n) for bigInts x,y,n. For greater speed, let y<x.
// function powMod(x,y,n) //return (x**y mod n) where x,y,n are bigInts and ** is exponentiation. 0**0=1. Faster for odd n.
// function randTruePrime(k) //return a new, random, k-bit, true prime using Maurer's algorithm.
// function sub(x,y) //return (x-y) for bigInts x and y. Negative answers will be 2s complement
//
// The following functions write a bigInt result to one of the parameters, but
// the result is never bigger than the original, so there can't be overflow problems:
//
// function divInt_(x,n) //do x=floor(x/n) for bigInt x and integer n, and return the remainder
// function GCD_(x,y) //set x to the greatest common divisor of bigInts x and y, (y is destroyed).
// function halve_(x) //do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement
// function mod_(x,n) //do x=x mod n for bigInts x and n.
// function rightShift_(x,n) //right shift bigInt x by n bits. 0 <= n < bpe.
//
// The following functions write a bigInt result to one of the parameters. The caller is responsible for
// ensuring it is large enough to hold the result.
//
// function addInt_(x,n) //do x=x+n where x is a bigInt and n is an integer
// function add_(x,y) //do x=x+y for bigInts x and y
// function addShift_(x,y,ys) //do x=x+(y<<(ys*bpe))
// function copy_(x,y) //do x=y on bigInts x and y
// function copyInt_(x,n) //do x=n on bigInt x and integer n
// function carry_(x) //do carries and borrows so each element of the bigInt x fits in bpe bits.
// function divide_(x,y,q,r) //divide_ x by y giving quotient q and remainder r
// function eGCD_(x,y,d,a,b) //sets a,b,d to positive big integers such that d = GCD_(x,y) = a*x-b*y
// function inverseMod_(x,n) //do x=x**(-1) mod n, for bigInts x and n. Returns 1 (0) if inverse does (doesn't) exist
// function inverseModInt_(x,n) //return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse
// function leftShift_(x,n) //left shift bigInt x by n bits. n<bpe.
// function linComb_(x,y,a,b) //do x=a*x+b*y for bigInts x and y and integers a and b
// function linCombShift_(x,y,b,ys) //do x=x+b*(y<<(ys*bpe)) for bigInts x and y, and integers b and ys
// function mont_(x,y,n,np) //Montgomery multiplication (see comments where the function is defined)
// function mult_(x,y) //do x=x*y for bigInts x and y.
// function multInt_(x,n) //do x=x*n where x is a bigInt and n is an integer.
// function multMod_(x,y,n) //do x=x*y mod n for bigInts x,y,n.
// function powMod_(x,y,n) //do x=x**y mod n, where x,y,n are bigInts (n is odd) and ** is exponentiation. 0**0=1.
// function randBigInt_(b,n,s) //do b = an n-bit random BigInt. if s=1, then nth bit (most significant bit) is set to 1. n>=1.
// function randTruePrime_(ans,k) //do ans = a random k-bit true random prime (not just probable prime) with 1 in the msb.
// function squareMod_(x,n) //do x=x*x mod n for bigInts x,n
// function sub_(x,y) //do x=x-y for bigInts x and y. Negative answers will be 2s complement.
// function subShift_(x,y,ys) //do x=x-(y<<(ys*bpe)). Negative answers will be 2s complement.
//
// The following functions are based on algorithms from the _Handbook of Applied Cryptography_
// powMod_() = algorithm 14.94, Montgomery exponentiation
// eGCD_,inverseMod_() = algorithm 14.61, Binary extended GCD_
// GCD_() = algorothm 14.57, Lehmer's algorithm
// mont_() = algorithm 14.36, Montgomery multiplication
// divide_() = algorithm 14.20 Multiple-precision division
// squareMod_() = algorithm 14.16 Multiple-precision squaring
// randTruePrime_() = algorithm 4.62, Maurer's algorithm
// millerRabin() = algorithm 4.24, Miller-Rabin algorithm
//
// Profiling shows:
// randTruePrime_() spends:
// 10% of its time in calls to powMod_()
// 85% of its time in calls to millerRabin()
// millerRabin() spends:
// 99% of its time in calls to powMod_() (always with a base of 2)
// powMod_() spends:
// 94% of its time in calls to mont_() (almost always with x==y)
//
// This suggests there are several ways to speed up this library slightly:
// - convert powMod_ to use a Montgomery form of k-ary window (or maybe a Montgomery form of sliding window)
// -- this should especially focus on being fast when raising 2 to a power mod n
// - convert randTruePrime_() to use a minimum r of 1/3 instead of 1/2 with the appropriate change to the test
// - tune the parameters in randTruePrime_(), including c, m, and recLimit
// - speed up the single loop in mont_() that takes 95% of the runtime, perhaps by reducing checking
// within the loop when all the parameters are the same length.
//
// There are several ideas that look like they wouldn't help much at all:
// - replacing trial division in randTruePrime_() with a sieve (that speeds up something taking almost no time anyway)
// - increase bpe from 15 to 30 (that would help if we had a 32*32->64 multiplier, but not with JavaScript's 32*32->32)
// - speeding up mont_(x,y,n,np) when x==y by doing a non-modular, non-Montgomery square
// followed by a Montgomery reduction. The intermediate answer will be twice as long as x, so that
// method would be slower. This is unfortunate because the code currently spends almost all of its time
// doing mont_(x,x,...), both for randTruePrime_() and powMod_(). A faster method for Montgomery squaring
// would have a large impact on the speed of randTruePrime_() and powMod_(). HAC has a couple of poorly-worded
// sentences that seem to imply it's faster to do a non-modular square followed by a single
// Montgomery reduction, but that's obviously wrong.
////////////////////////////////////////////////////////////////////////////////////////
//
// The whole library has been moved into the Baird.Crypto.BigInt scope by Giulio Cesare Solaroli <giulio.cesare@clipperz.com>
//
Baird.Crypto.BigInt.VERSION = "5.0";
Baird.Crypto.BigInt.NAME = "Baird.Crypto.BigInt";
MochiKit.Base.update(Baird.Crypto.BigInt, {
//globals
'bpe': 0, //bits stored per array element
'mask': 0, //AND this with an array element to chop it down to bpe bits
'radix': Baird.Crypto.BigInt.mask + 1, //equals 2^bpe. A single 1 bit to the left of the last bit of mask.
//the digits for converting to different bases
'digitsStr': '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_=!@#$%^&*()[]{}|;:,.<>/?`~ \\\'\"+-',
//initialize the global variables
for (bpe=0; (1<<(bpe+1)) > (1<<bpe); bpe++); //bpe=number of bits in the mantissa on this platform
bpe>>=1; //bpe=number of bits in one element of the array representing the bigInt
mask=(1<<bpe)-1; //AND the mask with an integer to get its bpe least significant bits
radix=mask+1; //2^bpe. a single 1 bit to the left of the first bit of mask
one=int2bigInt(1,1,1); //constant used in powMod_()
//the following global variables are scratchpad memory to
//reduce dynamic memory allocation in the inner loop
t=new Array(0);
ss=t; //used in mult_()
s0=t; //used in multMod_(), squareMod_()
s1=t; //used in powMod_(), multMod_(), squareMod_()
s2=t; //used in powMod_(), multMod_()
s3=t; //used in powMod_()
s4=t; s5=t; //used in mod_()
s6=t; //used in bigInt2str()
s7=t; //used in powMod_()
T=t; //used in GCD_()
sa=t; //used in mont_()
mr_x1=t; mr_r=t; mr_a=t; //used in millerRabin()
eg_v=t; eg_u=t; eg_A=t; eg_B=t; eg_C=t; eg_D=t; //used in eGCD_(), inverseMod_()
md_q1=t; md_q2=t; md_q3=t; md_r=t; md_r1=t; md_r2=t; md_tt=t; //used in mod_()
primes=t; pows=t; s_i=t; s_i2=t; s_R=t; s_rm=t; s_q=t; s_n1=t;
s_a=t; s_r2=t; s_n=t; s_b=t; s_d=t; s_x1=t; s_x2=t, s_aa=t; //used in randTruePrime_()
////////////////////////////////////////////////////////////////////////////////////////
//return array of all primes less than integer n
'findPrimes': function(n) {
var i,s,p,ans;
s=new Array(n);
for (i=0;i<n;i++)
s[i]=0;
s[0]=2;
p=0; //first p elements of s are primes, the rest are a sieve
for(;s[p]<n;) { //s[p] is the pth prime
for(i=s[p]*s[p]; i<n; i+=s[p]) //mark multiples of s[p]
s[i]=1;
p++;
s[p]=s[p-1]+1;
for(; s[p]<n && s[s[p]]; s[p]++); //find next prime (where s[p]==0)
}
ans=new Array(p);
for(i=0;i<p;i++)
ans[i]=s[i];
return ans;
},
//does a single round of Miller-Rabin base b consider x to be a possible prime?
//x is a bigInt, and b is an integer
'millerRabin': function(x,b) {
var i,j,k,s;
if (mr_x1.length!=x.length) {
mr_x1=dup(x);
mr_r=dup(x);
mr_a=dup(x);
}
copyInt_(mr_a,b);
copy_(mr_r,x);
copy_(mr_x1,x);
addInt_(mr_r,-1);
addInt_(mr_x1,-1);
//s=the highest power of two that divides mr_r
k=0;
for (i=0;i<mr_r.length;i++)
for (j=1;j<mask;j<<=1)
if (x[i] & j) {
s=(k<mr_r.length+bpe ? k : 0);
i=mr_r.length;
j=mask;
} else
k++;
if (s)
rightShift_(mr_r,s);
powMod_(mr_a,mr_r,x);
if (!equalsInt(mr_a,1) && !equals(mr_a,mr_x1)) {
j=1;
while (j<=s-1 && !equals(mr_a,mr_x1)) {
squareMod_(mr_a,x);
if (equalsInt(mr_a,1)) {
return 0;
}
j++;
}
if (!equals(mr_a,mr_x1)) {
return 0;
}
}
return 1;
},
//returns how many bits long the bigInt is, not counting leading zeros.
'bitSize': function(x) {
var j,z,w;
for (j=x.length-1; (x[j]==0) && (j>0); j--);
for (z=0,w=x[j]; w; (w>>=1),z++);
z+=bpe*j;
return z;
},
//return a copy of x with at least n elements, adding leading zeros if needed
'expand': function(x,n) {
var ans=int2bigInt(0,(x.length>n ? x.length : n)*bpe,0);
copy_(ans,x);
return ans;
},
//return a k-bit true random prime using Maurer's algorithm.
'randTruePrime': function(k) {
var ans=int2bigInt(0,k,0);
randTruePrime_(ans,k);
return trim(ans,1);
},
//return a new bigInt equal to (x mod n) for bigInts x and n.
'mod': function(x,n) {
var ans=dup(x);
mod_(ans,n);
return trim(ans,1);
},
//return (x+n) where x is a bigInt and n is an integer.
'addInt': function(x,n) {
var ans=expand(x,x.length+1);
addInt_(ans,n);
return trim(ans,1);
},
//return x*y for bigInts x and y. This is faster when y<x.
'mult': function(x,y) {
var ans=expand(x,x.length+y.length);
mult_(ans,y);
return trim(ans,1);
},
//return (x**y mod n) where x,y,n are bigInts and ** is exponentiation. 0**0=1. Faster for odd n.
'powMod': function(x,y,n) {
var ans=expand(x,n.length);
powMod_(ans,trim(y,2),trim(n,2),0); //this should work without the trim, but doesn't
return trim(ans,1);
},
//return (x-y) for bigInts x and y. Negative answers will be 2s complement
'sub': function(x,y) {
var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1));
sub_(ans,y);
return trim(ans,1);
},
//return (x+y) for bigInts x and y.
'add': function(x,y) {
var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1));
add_(ans,y);
return trim(ans,1);
},
//return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null
'inverseMod': function(x,n) {
var ans=expand(x,n.length);
var s;
s=inverseMod_(ans,n);
return s ? trim(ans,1) : null;
},
//return (x*y mod n) for bigInts x,y,n. For greater speed, let y<x.
'multMod': function(x,y,n) {
var ans=expand(x,n.length);
multMod_(ans,y,n);
return trim(ans,1);
},
//generate a k-bit true random prime using Maurer's algorithm,
//and put it into ans. The bigInt ans must be large enough to hold it.
'randTruePrime_': function(ans,k) {
var c,m,pm,dd,j,r,B,divisible,z,zz,recSize;
if (primes.length==0)
primes=findPrimes(30000); //check for divisibility by primes <=30000
if (pows.length==0) {
pows=new Array(512);
for (j=0;j<512;j++) {
pows[j]=Math.pow(2,j/511.-1.);
}
}
//c and m should be tuned for a particular machine and value of k, to maximize speed
//this was: c=primes[primes.length-1]/k/k; //check using all the small primes. (c=0.1 in HAC)
c=0.1;
m=20; //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits
recLimit=20; /*must be at least 2 (was 29)*/ //stop recursion when k <=recLimit
if (s_i2.length!=ans.length) {
s_i2=dup(ans);
s_R =dup(ans);
s_n1=dup(ans);
s_r2=dup(ans);
s_d =dup(ans);
s_x1=dup(ans);
s_x2=dup(ans);
s_b =dup(ans);
s_n =dup(ans);
s_i =dup(ans);
s_rm=dup(ans);
s_q =dup(ans);
s_a =dup(ans);
s_aa=dup(ans);
}
if (k <= recLimit) { //generate small random primes by trial division up to its square root
pm=(1<<((k+2)>>1))-1; //pm is binary number with all ones, just over sqrt(2^k)
copyInt_(ans,0);
for (dd=1;dd;) {
dd=0;
ans[0]= 1 | (1<<(k-1)) | Math.floor(Math.random()*(1<<k)); //random, k-bit, odd integer, with msb 1
for (j=1;(j<primes.length) && ((primes[j]&pm)==primes[j]);j++) { //trial division by all primes 3...sqrt(2^k)
if (0==(ans[0]%primes[j])) {
dd=1;
break;
}
}
}
carry_(ans);
return;
}
B=c*k*k; //try small primes up to B (or all the primes[] array if the largest is less than B).
if (k>2*m) //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits
for (r=1; k-k*r<=m; )
r=pows[Math.floor(Math.random()*512)]; //r=Math.pow(2,Math.random()-1);
else
r=.5;
//simulation suggests the more complex algorithm using r=.333 is only slightly faster.
recSize=Math.floor(r*k)+1;
randTruePrime_(s_q,recSize);
copyInt_(s_i2,0);
s_i2[Math.floor((k-2)/bpe)] |= (1<<((k-2)%bpe)); //s_i2=2^(k-2)
divide_(s_i2,s_q,s_i,s_rm); //s_i=floor((2^(k-1))/(2q))
z=bitSize(s_i);
for (;;) {
for (;;) { //generate z-bit numbers until one falls in the range [0,s_i-1]
randBigInt_(s_R,z,0);
if (greater(s_i,s_R))
break;
} //now s_R is in the range [0,s_i-1]
addInt_(s_R,1); //now s_R is in the range [1,s_i]
add_(s_R,s_i); //now s_R is in the range [s_i+1,2*s_i]
copy_(s_n,s_q);
mult_(s_n,s_R);
multInt_(s_n,2);
addInt_(s_n,1); //s_n=2*s_R*s_q+1
copy_(s_r2,s_R);
multInt_(s_r2,2); //s_r2=2*s_R
//check s_n for divisibility by small primes up to B
for (divisible=0,j=0; (j<primes.length) && (primes[j]<B); j++)
if (modInt(s_n,primes[j])==0) {
divisible=1;
break;
}
if (!divisible) //if it passes small primes check, then try a single Miller-Rabin base 2
if (!millerRabin(s_n,2)) //this line represents 75% of the total runtime for randTruePrime_
divisible=1;
if (!divisible) { //if it passes that test, continue checking s_n
addInt_(s_n,-3);
for (j=s_n.length-1;(s_n[j]==0) && (j>0); j--); //strip leading zeros
for (zz=0,w=s_n[j]; w; (w>>=1),zz++);
zz+=bpe*j; //zz=number of bits in s_n, ignoring leading zeros
for (;;) { //generate z-bit numbers until one falls in the range [0,s_n-1]
randBigInt_(s_a,zz,0);
if (greater(s_n,s_a))
break;
} //now s_a is in the range [0,s_n-1]
addInt_(s_n,3); //now s_a is in the range [0,s_n-4]
addInt_(s_a,2); //now s_a is in the range [2,s_n-2]
copy_(s_b,s_a);
copy_(s_n1,s_n);
addInt_(s_n1,-1);
powMod_(s_b,s_n1,s_n); //s_b=s_a^(s_n-1) modulo s_n
addInt_(s_b,-1);
if (isZero(s_b)) {
copy_(s_b,s_a);
powMod_(s_b,s_r2,s_n);
addInt_(s_b,-1);
copy_(s_aa,s_n);
copy_(s_d,s_b);
GCD_(s_d,s_n); //if s_b and s_n are relatively prime, then s_n is a prime
if (equalsInt(s_d,1)) {
copy_(ans,s_aa);
return; //if we've made it this far, then s_n is absolutely guaranteed to be prime
}
}
}
}
},
//set b to an n-bit random BigInt. If s=1, then nth bit (most significant bit) is set to 1.
//array b must be big enough to hold the result. Must have n>=1
'randBigInt_': function(b,n,s) {
var i,a;
for (i=0;i<b.length;i++)
b[i]=0;
a=Math.floor((n-1)/bpe)+1; //# array elements to hold the BigInt
for (i=0;i<a;i++) {
b[i]=Math.floor(Math.random()*(1<<(bpe-1)));
}
b[a-1] &= (2<<((n-1)%bpe))-1;
if (s)
b[a-1] |= (1<<((n-1)%bpe));
},
//set x to the greatest common divisor of x and y.
//x,y are bigInts with the same number of elements. y is destroyed.
'GCD_': function(x,y) {
var i,xp,yp,A,B,C,D,q,sing;
if (T.length!=x.length)
T=dup(x);
sing=1;
while (sing) { //while y has nonzero elements other than y[0]
sing=0;
for (i=1;i<y.length;i++) //check if y has nonzero elements other than 0
if (y[i]) {
sing=1;
break;
}
if (!sing) break; //quit when y all zero elements except possibly y[0]
for (i=x.length;!x[i] && i>=0;i--); //find most significant element of x
xp=x[i];
yp=y[i];
A=1; B=0; C=0; D=1;
while ((yp+C) && (yp+D)) {
q =Math.floor((xp+A)/(yp+C));
qp=Math.floor((xp+B)/(yp+D));
if (q!=qp)
break;
t= A-q*C; A=C; C=t; // do (A,B,xp, C,D,yp) = (C,D,yp, A,B,xp) - q*(0,0,0, C,D,yp)
t= B-q*D; B=D; D=t;
t=xp-q*yp; xp=yp; yp=t;
}
if (B) {
copy_(T,x);
linComb_(x,y,A,B); //x=A*x+B*y
linComb_(y,T,D,C); //y=D*y+C*T
} else {
mod_(x,y);
copy_(T,x);
copy_(x,y);
copy_(y,T);
}
}
if (y[0]==0)
return;
t=modInt(x,y[0]);
copyInt_(x,y[0]);
y[0]=t;
while (y[0]) {
x[0]%=y[0];
t=x[0]; x[0]=y[0]; y[0]=t;
}
},
//do x=x**(-1) mod n, for bigInts x and n.
//If no inverse exists, it sets x to zero and returns 0, else it returns 1.
//The x array must be at least as large as the n array.
function inverseMod_(x,n) {
var k=1+2*Math.max(x.length,n.length);
if(!(x[0]&1) && !(n[0]&1)) { //if both inputs are even, then inverse doesn't exist
copyInt_(x,0);
return 0;
}
if (eg_u.length!=k) {
eg_u=new Array(k);
eg_v=new Array(k);
eg_A=new Array(k);
eg_B=new Array(k);
eg_C=new Array(k);
eg_D=new Array(k);
}
copy_(eg_u,x);
copy_(eg_v,n);
copyInt_(eg_A,1);
copyInt_(eg_B,0);
copyInt_(eg_C,0);
copyInt_(eg_D,1);
for (;;) {
while(!(eg_u[0]&1)) { //while eg_u is even
halve_(eg_u);
if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if eg_A==eg_B==0 mod 2
halve_(eg_A);
halve_(eg_B);
} else {
add_(eg_A,n); halve_(eg_A);
sub_(eg_B,x); halve_(eg_B);
}
}
while (!(eg_v[0]&1)) { //while eg_v is even
halve_(eg_v);
if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if eg_C==eg_D==0 mod 2
halve_(eg_C);
halve_(eg_D);
} else {
add_(eg_C,n); halve_(eg_C);
sub_(eg_D,x); halve_(eg_D);
}
}
if (!greater(eg_v,eg_u)) { //eg_v <= eg_u
sub_(eg_u,eg_v);
sub_(eg_A,eg_C);
sub_(eg_B,eg_D);
} else { //eg_v > eg_u
sub_(eg_v,eg_u);
sub_(eg_C,eg_A);
sub_(eg_D,eg_B);
}
if (equalsInt(eg_u,0)) {
if (negative(eg_C)) //make sure answer is nonnegative
add_(eg_C,n);
copy_(x,eg_C);
if (!equalsInt(eg_v,1)) { //if GCD_(x,n)!=1, then there is no inverse
copyInt_(x,0);
return 0;
}
return 1;
}
}
}
//return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse
function inverseModInt_(x,n) {
var a=1,b=0,t;
for (;;) {
if (x==1) return a;
if (x==0) return 0;
b-=a*Math.floor(n/x);
n%=x;
if (n==1) return b; //to avoid negatives, change this b to n-b, and each -= to +=
if (n==0) return 0;
a-=b*Math.floor(x/n);
x%=n;
}
}
//Given positive bigInts x and y, change the bigints v, a, and b to positive bigInts such that:
// v = GCD_(x,y) = a*x-b*y
//The bigInts v, a, b, must have exactly as many elements as the larger of x and y.
function eGCD_(x,y,v,a,b) {
var g=0;
var k=Math.max(x.length,y.length);
if (eg_u.length!=k) {
eg_u=new Array(k);
eg_A=new Array(k);
eg_B=new Array(k);
eg_C=new Array(k);
eg_D=new Array(k);
}
while(!(x[0]&1) && !(y[0]&1)) { //while x and y both even
halve_(x);
halve_(y);
g++;
}
copy_(eg_u,x);
copy_(v,y);
copyInt_(eg_A,1);
copyInt_(eg_B,0);
copyInt_(eg_C,0);
copyInt_(eg_D,1);
for (;;) {
while(!(eg_u[0]&1)) { //while u is even
halve_(eg_u);
if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if A==B==0 mod 2
halve_(eg_A);
halve_(eg_B);
} else {
add_(eg_A,y); halve_(eg_A);
sub_(eg_B,x); halve_(eg_B);
}
}
while (!(v[0]&1)) { //while v is even
halve_(v);
if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if C==D==0 mod 2
halve_(eg_C);
halve_(eg_D);
} else {
add_(eg_C,y); halve_(eg_C);
sub_(eg_D,x); halve_(eg_D);
}
}
if (!greater(v,eg_u)) { //v<=u
sub_(eg_u,v);
sub_(eg_A,eg_C);
sub_(eg_B,eg_D);
} else { //v>u
sub_(v,eg_u);
sub_(eg_C,eg_A);
sub_(eg_D,eg_B);
}
if (equalsInt(eg_u,0)) {
if (negative(eg_C)) { //make sure a (C)is nonnegative
add_(eg_C,y);
sub_(eg_D,x);
}
multInt_(eg_D,-1); ///make sure b (D) is nonnegative
copy_(a,eg_C);
copy_(b,eg_D);
leftShift_(v,g);
return;
}
}
}
//is bigInt x negative?
function negative(x) {
return ((x[x.length-1]>>(bpe-1))&1);
}
//is (x << (shift*bpe)) > y?
//x and y are nonnegative bigInts
//shift is a nonnegative integer
function greaterShift(x,y,shift) {
var kx=x.length, ky=y.length;
k=((kx+shift)<ky) ? (kx+shift) : ky;
for (i=ky-1-shift; i<kx && i>=0; i++)
if (x[i]>0)
return 1; //if there are nonzeros in x to the left of the first column of y, then x is bigger
for (i=kx-1+shift; i<ky; i++)
if (y[i]>0)
return 0; //if there are nonzeros in y to the left of the first column of x, then x is not bigger
for (i=k-1; i>=shift; i--)
if (x[i-shift]>y[i]) return 1;
else if (x[i-shift]<y[i]) return 0;
return 0;
}
//is x > y? (x and y both nonnegative)
function greater(x,y) {
var i;
var k=(x.length<y.length) ? x.length : y.length;
for (i=x.length;i<y.length;i++)
if (y[i])
return 0; //y has more digits
for (i=y.length;i<x.length;i++)
if (x[i])
return 1; //x has more digits
for (i=k-1;i>=0;i--)
if (x[i]>y[i])
return 1;
else if (x[i]<y[i])
return 0;
return 0;
}
//divide_ x by y giving quotient q and remainder r. (q=floor(x/y), r=x mod y). All 4 are bigints.
//x must have at least one leading zero element.
//y must be nonzero.
//q and r must be arrays that are exactly the same length as x.
//the x array must have at least as many elements as y.
function divide_(x,y,q,r) {
var kx, ky;
var i,j,y1,y2,c,a,b;
copy_(r,x);
for (ky=y.length;y[ky-1]==0;ky--); //kx,ky is number of elements in x,y, not including leading zeros
for (kx=r.length;r[kx-1]==0 && kx>ky;kx--);
//normalize: ensure the most significant element of y has its highest bit set
b=y[ky-1];
for (a=0; b; a++)
b>>=1;
a=bpe-a; //a is how many bits to shift so that the high order bit of y is leftmost in its array element
leftShift_(y,a); //multiply both by 1<<a now, then divide_ both by that at the end
leftShift_(r,a);
copyInt_(q,0); // q=0
while (!greaterShift(y,r,kx-ky)) { // while (leftShift_(y,kx-ky) <= r) {
subShift_(r,y,kx-ky); // r=r-leftShift_(y,kx-ky)
q[kx-ky]++; // q[kx-ky]++;
} // }
for (i=kx-1; i>=ky; i--) {
if (r[i]==y[ky-1])
q[i-ky]=mask;
else
q[i-ky]=Math.floor((r[i]*radix+r[i-1])/y[ky-1]);
//The following for(;;) loop is equivalent to the commented while loop,
//except that the uncommented version avoids overflow.
//The commented loop comes from HAC, which assumes r[-1]==y[-1]==0
// while (q[i-ky]*(y[ky-1]*radix+y[ky-2]) > r[i]*radix*radix+r[i-1]*radix+r[i-2])
// q[i-ky]--;
for (;;) {
y2=(ky>1 ? y[ky-2] : 0)*q[i-ky];
c=y2>>bpe;
y2=y2 & mask;
y1=c+q[i-ky]*y[ky-1];
c=y1>>bpe;
y1=y1 & mask;
if (c==r[i] ? y1==r[i-1] ? y2>(i>1 ? r[i-2] : 0) : y1>r[i-1] : c>r[i])
q[i-ky]--;
else
break;
}
linCombShift_(r,y,-q[i-ky],i-ky); //r=r-q[i-ky]*leftShift_(y,i-ky)
if (negative(r)) {
addShift_(r,y,i-ky); //r=r+leftShift_(y,i-ky)
q[i-ky]--;
}
}
rightShift_(y,a); //undo the normalization step
rightShift_(r,a); //undo the normalization step
}
//do carries and borrows so each element of the bigInt x fits in bpe bits.
function carry_(x) {
var i,k,c,b;
k=x.length;
c=0;
for (i=0;i<k;i++) {
c+=x[i];
b=0;
if (c<0) {
b=-(c>>bpe);
c+=b*radix;
}
x[i]=c & mask;
c=(c>>bpe)-b;
}
}
//return x mod n for bigInt x and integer n.
function modInt(x,n) {
var i,c=0;
for (i=x.length-1; i>=0; i--)
c=(c*radix+x[i])%n;
return c;
}
//convert the integer t into a bigInt with at least the given number of bits.
//the returned array stores the bigInt in bpe-bit chunks, little endian (buff[0] is least significant word)
//Pad the array with leading zeros so that it has at least minSize elements.
//There will always be at least one leading 0 element.
function int2bigInt(t,bits,minSize) {
var i,k;
k=Math.ceil(bits/bpe)+1;
k=minSize>k ? minSize : k;
buff=new Array(k);
copyInt_(buff,t);
return buff;
}
//return the bigInt given a string representation in a given base.
//Pad the array with leading zeros so that it has at least minSize elements.
//If base=-1, then it reads in a space-separated list of array elements in decimal.
//The array will always have at least one leading zero, unless base=-1.
function str2bigInt(s,base,minSize) {
var d, i, j, x, y, kk;
var k=s.length;
if (base==-1) { //comma-separated list of array elements in decimal
x=new Array(0);
for (;;) {
y=new Array(x.length+1);
for (i=0;i<x.length;i++)
y[i+1]=x[i];
y[0]=parseInt(s,10);
x=y;
d=s.indexOf(',',0);
if (d<1)
break;
s=s.substring(d+1);
if (s.length==0)
break;
}
if (x.length<minSize) {
y=new Array(minSize);
copy_(y,x);
return y;
}
return x;
}
x=int2bigInt(0,base*k,0);
for (i=0;i<k;i++) {
d=digitsStr.indexOf(s.substring(i,i+1),0);
if (base<=36 && d>=36) //convert lowercase to uppercase if base<=36
d-=26;
if (d<base && d>=0) { //ignore illegal characters
multInt_(x,base);
addInt_(x,d);
}
}
for (k=x.length;k>0 && !x[k-1];k--); //strip off leading zeros
k=minSize>k+1 ? minSize : k+1;
y=new Array(k);
kk=k<x.length ? k : x.length;
for (i=0;i<kk;i++)
y[i]=x[i];
for (;i<k;i++)
y[i]=0;
return y;
}
//is bigint x equal to integer y?
//y must have less than bpe bits
function equalsInt(x,y) {
var i;
if (x[0]!=y)
return 0;
for (i=1;i<x.length;i++)
if (x[i])
return 0;
return 1;
}
//are bigints x and y equal?
//this works even if x and y are different lengths and have arbitrarily many leading zeros
function equals(x,y) {
var i;
var k=x.length<y.length ? x.length : y.length;
for (i=0;i<k;i++)
if (x[i]!=y[i])
return 0;
if (x.length>y.length) {
for (;i<x.length;i++)
if (x[i])
return 0;
} else {
for (;i<y.length;i++)
if (y[i])
return 0;
}
return 1;
}
//is the bigInt x equal to zero?
function isZero(x) {
var i;
for (i=0;i<x.length;i++)
if (x[i])
return 0;
return 1;
}
//convert a bigInt into a string in a given base, from base 2 up to base 95.
//Base -1 prints the contents of the array representing the number.
function bigInt2str(x,base) {
var i,t,s="";
if (s6.length!=x.length)
s6=dup(x);
else
copy_(s6,x);
if (base==-1) { //return the list of array contents
for (i=x.length-1;i>0;i--)
s+=x[i]+',';
s+=x[0];
}
else { //return it in the given base
while (!isZero(s6)) {
t=divInt_(s6,base); //t=s6 % base; s6=floor(s6/base);
s=digitsStr.substring(t,t+1)+s;
}
}
if (s.length==0)
s="0";
return s;
}
//returns a duplicate of bigInt x
function dup(x) {
var i;
buff=new Array(x.length);
copy_(buff,x);
return buff;
}
//do x=y on bigInts x and y. x must be an array at least as big as y (not counting the leading zeros in y).
function copy_(x,y) {
var i;
var k=x.length<y.length ? x.length : y.length;
for (i=0;i<k;i++)
x[i]=y[i];
for (i=k;i<x.length;i++)
x[i]=0;
}
//do x=y on bigInt x and integer y.
function copyInt_(x,n) {
var i,c;
for (c=n,i=0;i<x.length;i++) {
x[i]=c & mask;
c>>=bpe;
}
}
//do x=x+n where x is a bigInt and n is an integer.
//x must be large enough to hold the result.
function addInt_(x,n) {
var i,k,c,b;
x[0]+=n;
k=x.length;
c=0;
for (i=0;i<k;i++) {
c+=x[i];
b=0;
if (c<0) {
b=-(c>>bpe);
c+=b*radix;
}
x[i]=c & mask;
c=(c>>bpe)-b;
if (!c) return; //stop carrying as soon as the carry_ is zero
}
}
//right shift bigInt x by n bits. 0 <= n < bpe.
function rightShift_(x,n) {
var i;
var k=Math.floor(n/bpe);
if (k) {
for (i=0;i<x.length-k;i++) //right shift x by k elements
x[i]=x[i+k];
for (;i<x.length;i++)
x[i]=0;
n%=bpe;
}
for (i=0;i<x.length-1;i++) {
x[i]=mask & ((x[i+1]<<(bpe-n)) | (x[i]>>n));
}
x[i]>>=n;
}
//do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement
function halve_(x) {
var i;
for (i=0;i<x.length-1;i++) {
x[i]=mask & ((x[i+1]<<(bpe-1)) | (x[i]>>1));
}
x[i]=(x[i]>>1) | (x[i] & (radix>>1)); //most significant bit stays the same
}
//left shift bigInt x by n bits.
function leftShift_(x,n) {
var i;
var k=Math.floor(n/bpe);
if (k) {
for (i=x.length; i>=k; i--) //left shift x by k elements
x[i]=x[i-k];
for (;i>=0;i--)
x[i]=0;
n%=bpe;
}
if (!n)
return;
for (i=x.length-1;i>0;i--) {
x[i]=mask & ((x[i]<<n) | (x[i-1]>>(bpe-n)));
}
x[i]=mask & (x[i]<<n);
}
//do x=x*n where x is a bigInt and n is an integer.
//x must be large enough to hold the result.
function multInt_(x,n) {
var i,k,c,b;
if (!n)
return;
k=x.length;
c=0;
for (i=0;i<k;i++) {
c+=x[i]*n;
b=0;
if (c<0) {
b=-(c>>bpe);
c+=b*radix;
}
x[i]=c & mask;
c=(c>>bpe)-b;
}
}
//do x=floor(x/n) for bigInt x and integer n, and return the remainder
function divInt_(x,n) {
var i,r=0,s;
for (i=x.length-1;i>=0;i--) {
s=r*radix+x[i];
x[i]=Math.floor(s/n);
r=s%n;
}
return r;
}
//do the linear combination x=a*x+b*y for bigInts x and y, and integers a and b.
//x must be large enough to hold the answer.
function linComb_(x,y,a,b) {
var i,c,k,kk;
k=x.length<y.length ? x.length : y.length;
kk=x.length;
for (c=0,i=0;i<k;i++) {
c+=a*x[i]+b*y[i];
x[i]=c & mask;
c>>=bpe;
}
for (i=k;i<kk;i++) {
c+=a*x[i];
x[i]=c & mask;
c>>=bpe;
}
}
//do the linear combination x=a*x+b*(y<<(ys*bpe)) for bigInts x and y, and integers a, b and ys.
//x must be large enough to hold the answer.
function linCombShift_(x,y,b,ys) {
var i,c,k,kk;
k=x.length<ys+y.length ? x.length : ys+y.length;
kk=x.length;
for (c=0,i=ys;i<k;i++) {
c+=x[i]+b*y[i-ys];
x[i]=c & mask;
c>>=bpe;
}
for (i=k;c && i<kk;i++) {
c+=x[i];
x[i]=c & mask;
c>>=bpe;
}
}
//do x=x+(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys.
//x must be large enough to hold the answer.
function addShift_(x,y,ys) {
var i,c,k,kk;
k=x.length<ys+y.length ? x.length : ys+y.length;
kk=x.length;
for (c=0,i=ys;i<k;i++) {
c+=x[i]+y[i-ys];
x[i]=c & mask;
c>>=bpe;
}
for (i=k;c && i<kk;i++) {
c+=x[i];
x[i]=c & mask;
c>>=bpe;
}
}
//do x=x-(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys.
//x must be large enough to hold the answer.
function subShift_(x,y,ys) {
var i,c,k,kk;
k=x.length<ys+y.length ? x.length : ys+y.length;
kk=x.length;
for (c=0,i=ys;i<k;i++) {
c+=x[i]-y[i-ys];
x[i]=c & mask;
c>>=bpe;
}
for (i=k;c && i<kk;i++) {
c+=x[i];
x[i]=c & mask;
c>>=bpe;
}
}
//do x=x-y for bigInts x and y.
//x must be large enough to hold the answer.
//negative answers will be 2s complement
function sub_(x,y) {
var i,c,k,kk;
k=x.length<y.length ? x.length : y.length;
for (c=0,i=0;i<k;i++) {
c+=x[i]-y[i];
x[i]=c & mask;
c>>=bpe;
}
for (i=k;c && i<x.length;i++) {
c+=x[i];
x[i]=c & mask;
c>>=bpe;
}
}
//do x=x+y for bigInts x and y.
//x must be large enough to hold the answer.
function add_(x,y) {
var i,c,k,kk;
k=x.length<y.length ? x.length : y.length;
for (c=0,i=0;i<k;i++) {
c+=x[i]+y[i];
x[i]=c & mask;
c>>=bpe;
}
for (i=k;c && i<x.length;i++) {
c+=x[i];
x[i]=c & mask;
c>>=bpe;
}
}
//do x=x*y for bigInts x and y. This is faster when y<x.
function mult_(x,y) {
var i;
if (ss.length!=2*x.length)
ss=new Array(2*x.length);
copyInt_(ss,0);
for (i=0;i<y.length;i++)
if (y[i])
linCombShift_(ss,x,y[i],i); //ss=1*ss+y[i]*(x<<(i*bpe))
copy_(x,ss);
}
//do x=x mod n for bigInts x and n.
function mod_(x,n) {
if (s4.length!=x.length)
s4=dup(x);
else
copy_(s4,x);
if (s5.length!=x.length)
s5=dup(x);
divide_(s4,n,s5,x); //x = remainder of s4 / n
}
//do x=x*y mod n for bigInts x,y,n.
//for greater speed, let y<x.
function multMod_(x,y,n) {
var i;
if (s0.length!=2*x.length)
s0=new Array(2*x.length);
copyInt_(s0,0);
for (i=0;i<y.length;i++)
if (y[i])
linCombShift_(s0,x,y[i],i); //s0=1*s0+y[i]*(x<<(i*bpe))
mod_(s0,n);
copy_(x,s0);
}
//do x=x*x mod n for bigInts x,n.
function squareMod_(x,n) {
var i,j,d,c,kx,kn,k;
for (kx=x.length; kx>0 && !x[kx-1]; kx--); //ignore leading zeros in x
k=kx>n.length ? 2*kx : 2*n.length; //k=# elements in the product, which is twice the elements in the larger of x and n
if (s0.length!=k)
s0=new Array(k);
copyInt_(s0,0);
for (i=0;i<kx;i++) {
c=s0[2*i]+x[i]*x[i];
s0[2*i]=c & mask;
c>>=bpe;
for (j=i+1;j<kx;j++) {
c=s0[i+j]+2*x[i]*x[j]+c;
s0[i+j]=(c & mask);
c>>=bpe;
}
s0[i+kx]=c;
}
mod_(s0,n);
copy_(x,s0);
}
//return x with exactly k leading zero elements
function trim(x,k) {
var i,y;
for (i=x.length; i>0 && !x[i-1]; i--);
y=new Array(i+k);
copy_(y,x);
return y;
}
//do x=x**y mod n, where x,y,n are bigInts and ** is exponentiation. 0**0=1.
//this is faster when n is odd. x usually needs to have as many elements as n.
function powMod_(x,y,n) {
var k1,k2,kn,np;
if(s7.length!=n.length)
s7=dup(n);
//for even modulus, use a simple square-and-multiply algorithm,
//rather than using the more complex Montgomery algorithm.
if ((n[0]&1)==0) {
copy_(s7,x);
copyInt_(x,1);
while(!equalsInt(y,0)) {
if (y[0]&1)
multMod_(x,s7,n);
divInt_(y,2);
squareMod_(s7,n);
}
return;
}
//calculate np from n for the Montgomery multiplications
copyInt_(s7,0);
for (kn=n.length;kn>0 && !n[kn-1];kn--);
np=radix-inverseModInt_(modInt(n,radix),radix);
s7[kn]=1;
multMod_(x ,s7,n); // x = x * 2**(kn*bp) mod n
if (s3.length!=x.length)
s3=dup(x);
else
copy_(s3,x);
for (k1=y.length-1;k1>0 & !y[k1]; k1--); //k1=first nonzero element of y
if (y[k1]==0) { //anything to the 0th power is 1
copyInt_(x,1);
return;
}
for (k2=1<<(bpe-1);k2 && !(y[k1] & k2); k2>>=1); //k2=position of first 1 bit in y[k1]
for (;;) {
if (!(k2>>=1)) { //look at next bit of y
k1--;
if (k1<0) {
mont_(x,one,n,np);
return;
}
k2=1<<(bpe-1);
}
mont_(x,x,n,np);
if (k2 & y[k1]) //if next bit is a 1
mont_(x,s3,n,np);
}
}
//do x=x*y*Ri mod n for bigInts x,y,n,
// where Ri = 2**(-kn*bpe) mod n, and kn is the
// number of elements in the n array, not
// counting leading zeros.
//x must be large enough to hold the answer.
//It's OK if x and y are the same variable.
//must have:
// x,y < n
// n is odd
// np = -(n^(-1)) mod radix
function mont_(x,y,n,np) {
var i,j,c,ui,t;
var kn=n.length;
var ky=y.length;
if (sa.length!=kn)
sa=new Array(kn);
for (;kn>0 && n[kn-1]==0;kn--); //ignore leading zeros of n
//this function sometimes gives wrong answers when the next line is uncommented
//for (;ky>0 && y[ky-1]==0;ky--); //ignore leading zeros of y
copyInt_(sa,0);
//the following loop consumes 95% of the runtime for randTruePrime_() and powMod_() for large keys
for (i=0; i<kn; i++) {
t=sa[0]+x[i]*y[0];
ui=((t & mask) * np) & mask; //the inner "& mask" is needed on Macintosh MSIE, but not windows MSIE
c=(t+ui*n[0]) >> bpe;
t=x[i];
//do sa=(sa+x[i]*y+ui*n)/b where b=2**bpe
for (j=1;j<ky;j++) {
c+=sa[j]+t*y[j]+ui*n[j];
sa[j-1]=c & mask;
c>>=bpe;
}
for (;j<kn;j++) {
c+=sa[j]+ui*n[j];
sa[j-1]=c & mask;
c>>=bpe;
}
sa[j-1]=c & mask;
}
if (!greater(n,sa))
sub_(sa,n);
copy_(x,sa);
}
//#############################################################################
//#############################################################################
//#############################################################################
//#############################################################################
//#############################################################################
//#############################################################################
//#############################################################################
//#############################################################################
Clipperz.Crypto.BigInt = function (aValue, aBase) {
var base;
var value;
if (typeof(aValue) == 'object') {
this._internalValue = aValue;
} else {
if (typeof(aValue) == 'undefined') {
value = "0";
} else {
value = aValue + "";
}
if (typeof(aBase) == 'undefined') {
base = 10;
} else {
base = aBase;
}
this._internalValue = str2bigInt(value, base, 1, 1);
}
return this;
}
//=============================================================================
MochiKit.Base.update(Clipperz.Crypto.BigInt.prototype, {
//-------------------------------------------------------------------------
'internalValue': function () {
return this._internalValue;
},
//-------------------------------------------------------------------------
'isBigInt': true,
//-------------------------------------------------------------------------
'toString': function(aBase) {
return this.asString(aBase);
},
//-------------------------------------------------------------------------
'asString': function (aBase) {
var base;
if (typeof(aBase) == 'undefined') {
base = 10;
} else {
base = aBase;
}
return bigInt2str(this.internalValue(), base).toLowerCase();
},
//-------------------------------------------------------------------------
'equals': function (aValue) {
var result;
if (aValue.isBigInt) {
result = equals(this.internalValue(), aValue.internalValue());
} else if (typeof(aValue) == "number") {
result = equalsInt(this.internalValue(), aValue);
} else {
throw Clipperz.Crypt.BigInt.exception.UnknownType;
}
return result;
},
//-------------------------------------------------------------------------
'add': function (aValue) {
var result;
if (aValue.isBigInt) {
result = add(this.internalValue(), aValue.internalValue());
} else {
result = addInt(this.internalValue(), aValue);
}
return new Clipperz.Crypto.BigInt(result);
},
//-------------------------------------------------------------------------
'subtract': function (aValue) {
var result;
var value;
if (aValue.isBigInt) {
value = aValue;
} else {
value = new Clipperz.Crypto.BigInt(aValue);
}
result = sub(this.internalValue(), value.internalValue());
return new Clipperz.Crypto.BigInt(result);
},
//-------------------------------------------------------------------------
'multiply': function (aValue, aModule) {
var result;
var value;
if (aValue.isBigInt) {
value = aValue;
} else {
value = new Clipperz.Crypto.BigInt(aValue);
}
if (typeof(aModule) == 'undefined') {
result = mult(this.internalValue(), value.internalValue());
} else {
result = multMod(this.internalValue(), value.internalValue(), aModule);
}
return new Clipperz.Crypto.BigInt(result);
},
//-------------------------------------------------------------------------
'module': function (aModule) {
var result;
var module;
if (aModule.isBigInt) {
module = aModule;
} else {
module = new Clipperz.Crypto.BigInt(aModule);
}
result = mod(this.internalValue(), module.internalValue());
return new Clipperz.Crypto.BigInt(result);
},
//-------------------------------------------------------------------------
'powerModule': function(aValue, aModule) {
var result;
var value;
var module;
if (aValue.isBigInt) {
value = aValue;
} else {
value = new Clipperz.Crypto.BigInt(aValue);
}
if (aModule.isBigInt) {
module = aModule;
} else {
module = new Clipperz.Crypto.BigInt(aModule);
}
if (aValue == -1) {
result = inverseMod(this.internalValue(), module.internalValue());
} else {
result = powMod(this.internalValue(), value.internalValue(), module.internalValue());
}
return new Clipperz.Crypto.BigInt(result);
},
//-------------------------------------------------------------------------
'bitSize': function() {
return bitSize(this.internalValue());
},
//-------------------------------------------------------------------------
__syntaxFix__: "syntax fix"
});
//#############################################################################
Clipperz.Crypto.BigInt.randomPrime = function(aBitSize) {
return new Clipperz.Crypto.BigInt(randTruePrime(aBitSize));
}
//#############################################################################
//#############################################################################
//#############################################################################
Clipperz.Crypto.BigInt.equals = function(a, b) {
return a.equals(b);
}
Clipperz.Crypto.BigInt.add = function(a, b) {
return a.add(b);
}
Clipperz.Crypto.BigInt.subtract = function(a, b) {
return a.subtract(b);
}
Clipperz.Crypto.BigInt.multiply = function(a, b, module) {
return a.multiply(b, module);
}
Clipperz.Crypto.BigInt.module = function(a, module) {
return a.module(module);
}
Clipperz.Crypto.BigInt.powerModule = function(a, b, module) {
return a.powerModule(b, module);
}
Clipperz.Crypto.BigInt.exception = {
UnknownType: new MochiKit.Base.NamedError("Clipperz.Crypto.BigInt.exception.UnknownType")
}