2011-10-03 00:56:18 +01:00

462 lines
17 KiB
JavaScript

/*
Copyright 2008-2011 Clipperz Srl
This file is part of Clipperz's Javascript Crypto Library.
Javascript Crypto Library provides web developers with an extensive
and efficient set of cryptographic functions. The library aims to
obtain maximum execution speed while preserving modularity and
reusability.
For further information about its features and functionalities please
refer to http://www.clipperz.com
* Javascript Crypto Library is free software: you can redistribute
it and/or modify it under the terms of the GNU Affero General Public
License as published by the Free Software Foundation, either version
3 of the License, or (at your option) any later version.
* Javascript Crypto Library is distributed in the hope that it will
be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Affero General Public License for more details.
* You should have received a copy of the GNU Affero General Public
License along with Javascript Crypto Library. If not, see
<http://www.gnu.org/licenses/>.
*/
try { if (typeof(Clipperz.ByteArray) == 'undefined') { throw ""; }} catch (e) {
throw "Clipperz.Crypto.ECC depends on Clipperz.ByteArray!";
}
if (typeof(Clipperz.Crypto.ECC) == 'undefined') { Clipperz.Crypto.ECC = {}; }
if (typeof(Clipperz.Crypto.ECC.BinaryField) == 'undefined') { Clipperz.Crypto.ECC.BinaryField = {}; }
Clipperz.Crypto.ECC.BinaryField.Curve = function(args) {
args = args || {};
this._modulus = args.modulus;
this._a = args.a;
this._b = args.b;
this._G = args.G;
this._r = args.r;
this._h = args.h;
this._finiteField = null;
return this;
}
Clipperz.Crypto.ECC.BinaryField.Curve.prototype = MochiKit.Base.update(null, {
'asString': function() {
return "Clipperz.Crypto.ECC.BinaryField.Curve";
},
//-----------------------------------------------------------------------------
'modulus': function() {
return this._modulus;
},
'a': function() {
return this._a;
},
'b': function() {
return this._b;
},
'G': function() {
return this._G;
},
'r': function() {
return this._r;
},
'h': function() {
return this._h;
},
//-----------------------------------------------------------------------------
'finiteField': function() {
if (this._finiteField == null) {
this._finiteField = new Clipperz.Crypto.ECC.BinaryField.FiniteField({modulus:this.modulus()})
}
return this._finiteField;
},
//-----------------------------------------------------------------------------
'negate': function(aPointA) {
var result;
result = new Clipperz.Crypto.ECC.Point({x:aPointA.x(), y:this.finiteField().add(aPointA.y(), aPointA.x())})
return result;
},
//-----------------------------------------------------------------------------
'add': function(aPointA, aPointB) {
var result;
//console.log(">>> ECC.BinaryField.Curve.add");
if (aPointA.isZero()) {
//console.log("--- pointA == zero");
result = aPointB;
} else if (aPointB.isZero()) {
//console.log("--- pointB == zero");
result = aPointA;
} else if ( (aPointA.x().compare(aPointB.x()) == 0) && ((aPointA.y().compare(aPointB.y()) != 0) || aPointB.x().isZero())) {
//console.log("compare A.x - B.x: ", aPointA.x().compare(aPointB.x()));
//console.log("compare A.y - B.y: ", (aPointA.y().compare(aPointB.y()) != 0));
//console.log("compare B.x.isZero(): ", aPointB.x().isZero());
//console.log("--- result = zero");
result = new Clipperz.Crypto.ECC.BinaryField.Point({x:Clipperz.Crypto.ECC.BinaryField.Value.O, y:Clipperz.Crypto.ECC.BinaryField.Value.O});
} else {
//console.log("--- result = ELSE");
var f2m;
var x, y;
var lambda;
var aX, aY, bX, bY;
aX = aPointA.x()._value;
aY = aPointA.y()._value;
bX = aPointB.x()._value;
bY = aPointB.y()._value;
f2m = this.finiteField();
if (aPointA.x().compare(aPointB.x()) != 0) {
//console.log(" a.x != b.x");
lambda = f2m._fastMultiply(
f2m._add(aY, bY),
f2m._inverse(f2m._add(aX, bX))
);
x = f2m._add(this.a()._value, f2m._square(lambda));
f2m._overwriteAdd(x, lambda);
f2m._overwriteAdd(x, aX);
f2m._overwriteAdd(x, bX);
} else {
//console.log(" a.x == b.x");
lambda = f2m._add(bX, f2m._fastMultiply(bY, f2m._inverse(bX)));
//console.log(" lambda: " + lambda.asString(16));
x = f2m._add(this.a()._value, f2m._square(lambda));
//console.log(" x (step 1): " + x.asString(16));
f2m._overwriteAdd(x, lambda);
//console.log(" x (step 2): " + x.asString(16));
}
y = f2m._fastMultiply(f2m._add(bX, x), lambda);
//console.log(" y (step 1): " + y.asString(16));
f2m._overwriteAdd(y, x);
//console.log(" y (step 2): " + y.asString(16));
f2m._overwriteAdd(y, bY);
//console.log(" y (step 3): " + y.asString(16));
result = new Clipperz.Crypto.ECC.BinaryField.Point({x:new Clipperz.Crypto.ECC.BinaryField.Value(x), y:new Clipperz.Crypto.ECC.BinaryField.Value(y)})
}
//console.log("<<< ECC.BinaryField.Curve.add");
return result;
},
//-----------------------------------------------------------------------------
'overwriteAdd': function(aPointA, aPointB) {
if (aPointA.isZero()) {
// result = aPointB;
aPointA._x._value = aPointB._x._value;
aPointA._y._value = aPointB._y._value;
} else if (aPointB.isZero()) {
// result = aPointA;
} else if ( (aPointA.x().compare(aPointB.x()) == 0) && ((aPointA.y().compare(aPointB.y()) != 0) || aPointB.x().isZero())) {
// result = new Clipperz.Crypto.ECC.BinaryField.Point({x:Clipperz.Crypto.ECC.BinaryField.Value.O, y:Clipperz.Crypto.ECC.BinaryField.Value.O});
aPointA._x = Clipperz.Crypto.ECC.BinaryField.Value.O;
aPointA._y = Clipperz.Crypto.ECC.BinaryField.Value.O;
} else {
var f2m;
var x, y;
var lambda;
var aX, aY, bX, bY;
aX = aPointA.x()._value;
aY = aPointA.y()._value;
bX = aPointB.x()._value;
bY = aPointB.y()._value;
f2m = this.finiteField();
if (aPointA.x().compare(aPointB.x()) != 0) {
//console.log(" a.x != b.x");
lambda = f2m._fastMultiply(
f2m._add(aY, bY),
f2m._inverse(f2m._add(aX, bX))
);
x = f2m._add(this.a()._value, f2m._square(lambda));
f2m._overwriteAdd(x, lambda);
f2m._overwriteAdd(x, aX);
f2m._overwriteAdd(x, bX);
} else {
//console.log(" a.x == b.x");
lambda = f2m._add(bX, f2m._fastMultiply(bY, f2m._inverse(bX)));
//console.log(" lambda: " + lambda.asString(16));
x = f2m._add(this.a()._value, f2m._square(lambda));
//console.log(" x (step 1): " + x.asString(16));
f2m._overwriteAdd(x, lambda);
//console.log(" x (step 2): " + x.asString(16));
}
y = f2m._fastMultiply(f2m._add(bX, x), lambda);
//console.log(" y (step 1): " + y.asString(16));
f2m._overwriteAdd(y, x);
//console.log(" y (step 2): " + y.asString(16));
f2m._overwriteAdd(y, bY);
//console.log(" y (step 3): " + y.asString(16));
// result = new Clipperz.Crypto.ECC.BinaryField.Point({x:new Clipperz.Crypto.ECC.BinaryField.Value(x), y:new Clipperz.Crypto.ECC.BinaryField.Value(y)})
aPointA._x._value = x;
aPointA._y._value = y;
}
//console.log("<<< ECC.BinaryField.Curve.add");
return result;
},
//-----------------------------------------------------------------------------
'multiply': function(aValue, aPoint) {
var result;
//console.profile();
result = new Clipperz.Crypto.ECC.BinaryField.Point({x:Clipperz.Crypto.ECC.BinaryField.Value.O, y:Clipperz.Crypto.ECC.BinaryField.Value.O});
if (aValue.isZero() == false) {
var k, Q;
var i;
var countIndex; countIndex = 0;
if (aValue.compare(Clipperz.Crypto.ECC.BinaryField.Value.O) > 0) {
k = aValue;
Q = aPoint;
} else {
MochiKit.Logging.logError("The Clipperz.Crypto.ECC.BinaryFields.Value does not work with negative values!!!!");
k = aValue.negate();
Q = this.negate(aPoint);
}
//console.log("k: " + k.toString(16));
//console.log("k.bitSize: " + k.bitSize());
for (i=k.bitSize()-1; i>=0; i--) {
result = this.add(result, result);
// this.overwriteAdd(result, result);
if (k.isBitSet(i)) {
result = this.add(result, Q);
// this.overwriteAdd(result, Q);
}
// if (countIndex==100) {console.log("multiply.break"); break;} else countIndex++;
}
}
//console.profileEnd();
return result;
},
//-----------------------------------------------------------------------------
__syntaxFix__: "syntax fix"
});
//#############################################################################
Clipperz.Crypto.ECC.StandardCurves = {};
MochiKit.Base.update(Clipperz.Crypto.ECC.StandardCurves, {
/*
'_K571': null,
'K571': function() {
if (Clipperz.Crypto.ECC.StandardCurves._K571 == null) {
Clipperz.Crypto.ECC.StandardCurves._K571 = new Clipperz.Crypto.ECC.Curve.Koblitz({
exadecimalForm: '80000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000425',
a: new Clipperz.Crypto.BigInt(0),
G: new Clipperz.Crypto.ECC.Point({
x: new Clipperz.Crypto.BigInt('26eb7a859923fbc82189631f8103fe4ac9ca2970012d5d46024804801841ca44370958493b205e647da304db4ceb08cbbd1ba39494776fb988b47174dca88c7e2945283a01c8972', 16),
y: new Clipperz.Crypto.BigInt('349dc807f4fbf374f4aeade3bca95314dd58cec9f307a54ffc61efc006d8a2c9d4979c0ac44aea74fbebbb9f772aedcb620b01a7ba7af1b320430c8591984f601cd4c143ef1c7a3', 16)
}),
n: new Clipperz.Crypto.BigInt('1932268761508629172347675945465993672149463664853217499328617625725759571144780212268133978522706711834706712800825351461273674974066617311929682421617092503555733685276673', 16),
h: new Clipperz.Crypto.BigInt(4)
});
}
return Clipperz.Crypto.ECC.StandardCurves._K571;
},
*/
//-----------------------------------------------------------------------------
'_B571': null,
'B571': function() { // f(z) = z^571 + z^10 + z^5 + z^2 + 1
if (Clipperz.Crypto.ECC.StandardCurves._B571 == null) {
Clipperz.Crypto.ECC.StandardCurves._B571 = new Clipperz.Crypto.ECC.BinaryField.Curve({
modulus: new Clipperz.Crypto.ECC.BinaryField.Value('80000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000425', 16),
a: new Clipperz.Crypto.ECC.BinaryField.Value('1', 16),
b: new Clipperz.Crypto.ECC.BinaryField.Value('02f40e7e2221f295de297117b7f3d62f5c6a97ffcb8ceff1cd6ba8ce4a9a18ad84ffabbd8efa59332be7ad6756a66e294afd185a78ff12aa520e4de739baca0c7ffeff7f2955727a', 16),
G: new Clipperz.Crypto.ECC.BinaryField.Point({
x: new Clipperz.Crypto.ECC.BinaryField.Value('0303001d 34b85629 6c16c0d4 0d3cd775 0a93d1d2 955fa80a a5f40fc8 db7b2abd bde53950 f4c0d293 cdd711a3 5b67fb14 99ae6003 8614f139 4abfa3b4 c850d927 e1e7769c 8eec2d19', 16),
y: new Clipperz.Crypto.ECC.BinaryField.Value('037bf273 42da639b 6dccfffe b73d69d7 8c6c27a6 009cbbca 1980f853 3921e8a6 84423e43 bab08a57 6291af8f 461bb2a8 b3531d2f 0485c19b 16e2f151 6e23dd3c 1a4827af 1b8ac15b', 16)
}),
r: new Clipperz.Crypto.ECC.BinaryField.Value('03ffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff e661ce18 ff559873 08059b18 6823851e c7dd9ca1 161de93d 5174d66e 8382e9bb 2fe84e47', 16),
h: new Clipperz.Crypto.ECC.BinaryField.Value('2', 16)
// S: new Clipperz.Crypto.ECC.BinaryField.Value('2aa058f73a0e33ab486b0f610410c53a7f132310', 10),
// n: new Clipperz.Crypto.ECC.BinaryField.Value('03ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe661ce18ff55987308059b186823851ec7dd9ca1161de93d5174d66e8382e9bb2fe84e47', 16),
});
//-----------------------------------------------------------------------------
//
// Guide to Elliptic Curve Cryptography
// Darrel Hankerson, Alfred Menezes, Scott Vanstone
// - Pag: 56, Alorithm 2.45 (with a typo!!!)
//
//-----------------------------------------------------------------------------
//
// http://www.milw0rm.com/papers/136
//
// -------------------------------------------------------------------------
// Polynomial Reduction Algorithm Modulo f571
// -------------------------------------------------------------------------
//
// Input: Polynomial p(x) of degree 1140 or less, stored as
// an array of 2T machinewords.
// Output: p(x) mod f571(x)
//
// FOR i = T-1, ..., 0 DO
// SET X := P[i+T]
// P[i] := P[i] ^ (X<<5) ^ (X<<7) ^ (X<<10) ^ (X<<15)
// P[i+1] := P[i+1] ^ (X>>17) ^ (X>>22) ^ (X>>25) ^ (X>>27)
//
// SET X := P[T-1] >> 27
// P[0] := P[0] ^ X ^ (X<<2) ^ (X<<5) ^ (X<<10)
// P[T-1] := P[T-1] & 0x07ffffff
//
// RETURN P[T-1],...,P[0]
//
// -------------------------------------------------------------------------
//
Clipperz.Crypto.ECC.StandardCurves._B571.finiteField().slowModule = Clipperz.Crypto.ECC.StandardCurves._B571.finiteField().module;
Clipperz.Crypto.ECC.StandardCurves._B571.finiteField().module = function(aValue) {
var result;
if (aValue.bitSize() > 1140) {
MochiKit.Logging.logWarning("ECC.StandarCurves.B571.finiteField().module: falling back to default implementation");
result = Clipperz.Crypto.ECC.StandardCurves._B571.finiteField().slowModule(aValue);
} else {
var C, T;
var i;
//console.log(">>> binaryField.finiteField.(improved)module");
// C = aValue.value().slice(0);
C = aValue._value.slice(0);
for (i=35; i>=18; i--) {
T = C[i];
C[i-18] = (((C[i-18] ^ (T<<5) ^ (T<<7) ^ (T<<10) ^ (T<<15)) & 0xffffffff) >>> 0);
C[i-17] = ((C[i-17] ^ (T>>>27) ^ (T>>>25) ^ (T>>>22) ^ (T>>>17)) >>> 0);
}
T = (C[17] >>> 27);
C[0] = ((C[0] ^ T ^ ((T<<2) ^ (T<<5) ^ (T<<10)) & 0xffffffff) >>> 0);
C[17] = (C[17] & 0x07ffffff);
for(i=18; i<=35; i++) {
C[i] = 0;
}
result = new Clipperz.Crypto.ECC.BinaryField.Value(C);
//console.log("<<< binaryField.finiteField.(improved)module");
}
return result;
};
}
return Clipperz.Crypto.ECC.StandardCurves._B571;
},
//-----------------------------------------------------------------------------
'_B283': null,
'B283': function() { // f(z) = z^283 + z^12 + z^7 + z^5 + 1
if (Clipperz.Crypto.ECC.StandardCurves._B283 == null) {
Clipperz.Crypto.ECC.StandardCurves._B283 = new Clipperz.Crypto.ECC.BinaryField.Curve({
// modulus: new Clipperz.Crypto.ECC.BinaryField.Value('10000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000010a1', 16),
modulus: new Clipperz.Crypto.ECC.BinaryField.Value('08000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000010a1', 16),
a: new Clipperz.Crypto.ECC.BinaryField.Value('1', 16),
b: new Clipperz.Crypto.ECC.BinaryField.Value('027b680a c8b8596d a5a4af8a 19a0303f ca97fd76 45309fa2 a581485a f6263e31 3b79a2f5', 16),
G: new Clipperz.Crypto.ECC.BinaryField.Point({
x: new Clipperz.Crypto.ECC.BinaryField.Value('05f93925 8db7dd90 e1934f8c 70b0dfec 2eed25b8 557eac9c 80e2e198 f8cdbecd 86b12053', 16),
y: new Clipperz.Crypto.ECC.BinaryField.Value('03676854 fe24141c b98fe6d4 b20d02b4 516ff702 350eddb0 826779c8 13f0df45 be8112f4', 16)
}),
r: new Clipperz.Crypto.ECC.BinaryField.Value('03ffffff ffffffff ffffffff ffffffff ffffef90 399660fc 938a9016 5b042a7c efadb307', 16),
h: new Clipperz.Crypto.ECC.BinaryField.Value('2', 16)
// S: new Clipperz.Crypto.ECC.BinaryField.Value('2aa058f73a0e33ab486b0f610410c53a7f132310', 10),
// n: new Clipperz.Crypto.ECC.BinaryField.Value('03ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe661ce18ff55987308059b186823851ec7dd9ca1161de93d5174d66e8382e9bb2fe84e47', 16),
});
//-----------------------------------------------------------------------------
//
// Guide to Elliptic Curve Cryptography
// Darrel Hankerson, Alfred Menezes, Scott Vanstone
// - Pag: 56, Alorithm 2.43
//
//-----------------------------------------------------------------------------
Clipperz.Crypto.ECC.StandardCurves._B283.finiteField().slowModule = Clipperz.Crypto.ECC.StandardCurves._B283.finiteField().module;
Clipperz.Crypto.ECC.StandardCurves._B283.finiteField().module = function(aValue) {
var result;
if (aValue.bitSize() > 564) {
MochiKit.Logging.logWarning("ECC.StandarCurves.B283.finiteField().module: falling back to default implementation");
result = Clipperz.Crypto.ECC.StandardCurves._B283.finiteField().slowModule(aValue);
} else {
var C, T;
var i;
//console.log(">>> binaryField.finiteField.(improved)module");
C = aValue._value.slice(0);
for (i=17; i>=9; i--) {
T = C[i];
C[i-9] = (((C[i-9] ^ (T<<5) ^ (T<<10) ^ (T<<12) ^ (T<<17)) & 0xffffffff) >>> 0);
C[i-8] = ((C[i-8] ^ (T>>>27) ^ (T>>>22) ^ (T>>>20) ^ (T>>>15)) >>> 0);
}
T = (C[8] >>> 27);
C[0] = ((C[0] ^ T ^ ((T<<5) ^ (T<<7) ^ (T<<12)) & 0xffffffff) >>> 0);
C[8] = (C[8] & 0x07ffffff);
for(i=9; i<=17; i++) {
C[i] = 0;
}
result = new Clipperz.Crypto.ECC.BinaryField.Value(C);
//console.log("<<< binaryField.finiteField.(improved)module");
}
return result;
};
}
return Clipperz.Crypto.ECC.StandardCurves._B283;
},
//-----------------------------------------------------------------------------
__syntaxFix__: "syntax fix"
});
//#############################################################################