527 lines
20 KiB
JavaScript
527 lines
20 KiB
JavaScript
/*
|
|
|
|
Copyright 2008-2011 Clipperz Srl
|
|
|
|
This file is part of Clipperz's Javascript Crypto Library.
|
|
Javascript Crypto Library provides web developers with an extensive
|
|
and efficient set of cryptographic functions. The library aims to
|
|
obtain maximum execution speed while preserving modularity and
|
|
reusability.
|
|
For further information about its features and functionalities please
|
|
refer to http://www.clipperz.com
|
|
|
|
* Javascript Crypto Library is free software: you can redistribute
|
|
it and/or modify it under the terms of the GNU Affero General Public
|
|
License as published by the Free Software Foundation, either version
|
|
3 of the License, or (at your option) any later version.
|
|
|
|
* Javascript Crypto Library is distributed in the hope that it will
|
|
be useful, but WITHOUT ANY WARRANTY; without even the implied
|
|
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
|
See the GNU Affero General Public License for more details.
|
|
|
|
* You should have received a copy of the GNU Affero General Public
|
|
License along with Javascript Crypto Library. If not, see
|
|
<http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
//try { if (typeof(Clipperz.ByteArray) == 'undefined') { throw ""; }} catch (e) {
|
|
// throw "Clipperz.Crypto.ECC depends on Clipperz.ByteArray!";
|
|
//}
|
|
if (typeof(Clipperz.Crypto.ECC) == 'undefined') { Clipperz.Crypto.ECC = {}; }
|
|
if (typeof(Clipperz.Crypto.ECC.BinaryField) == 'undefined') { Clipperz.Crypto.ECC.BinaryField = {}; }
|
|
|
|
Clipperz.Crypto.ECC.BinaryField.FiniteField = function(args) {
|
|
args = args || {};
|
|
this._modulus = args.modulus;
|
|
|
|
return this;
|
|
}
|
|
|
|
Clipperz.Crypto.ECC.BinaryField.FiniteField.prototype = MochiKit.Base.update(null, {
|
|
|
|
'asString': function() {
|
|
return "Clipperz.Crypto.ECC.BinaryField.FiniteField (" + this.modulus().asString() + ")";
|
|
},
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
'modulus': function() {
|
|
return this._modulus;
|
|
},
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
'_module': function(aValue) {
|
|
var result;
|
|
var modulusComparison;
|
|
//console.log(">>> binaryField.finiteField.(standard)module");
|
|
|
|
modulusComparison = Clipperz.Crypto.ECC.BinaryField.Value._compare(aValue, this.modulus()._value);
|
|
|
|
if (modulusComparison < 0) {
|
|
result = aValue;
|
|
} else if (modulusComparison == 0) {
|
|
result = [0];
|
|
} else {
|
|
var modulusBitSize;
|
|
var resultBitSize;
|
|
|
|
result = aValue;
|
|
|
|
modulusBitSize = this.modulus().bitSize();
|
|
resultBitSize = Clipperz.Crypto.ECC.BinaryField.Value._bitSize(result);
|
|
while (resultBitSize >= modulusBitSize) {
|
|
Clipperz.Crypto.ECC.BinaryField.Value._overwriteXor(result, Clipperz.Crypto.ECC.BinaryField.Value._shiftLeft(this.modulus()._value, resultBitSize - modulusBitSize));
|
|
resultBitSize = Clipperz.Crypto.ECC.BinaryField.Value._bitSize(result);
|
|
}
|
|
}
|
|
//console.log("<<< binaryField.finiteField.(standard)module");
|
|
|
|
return result;
|
|
},
|
|
|
|
'module': function(aValue) {
|
|
return new Clipperz.Crypto.ECC.BinaryField.Value(this._module(aValue._value.slice(0)));
|
|
},
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
'_add': function(a, b) {
|
|
return Clipperz.Crypto.ECC.BinaryField.Value._xor(a, b);
|
|
},
|
|
|
|
'_overwriteAdd': function(a, b) {
|
|
Clipperz.Crypto.ECC.BinaryField.Value._overwriteXor(a, b);
|
|
},
|
|
|
|
'add': function(a, b) {
|
|
return new Clipperz.Crypto.ECC.BinaryField.Value(this._add(a._value, b._value));
|
|
},
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
'negate': function(aValue) {
|
|
return aValue.clone();
|
|
},
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
'_multiply': function(a, b) {
|
|
var result;
|
|
var valueToXor;
|
|
var i,c;
|
|
|
|
result = [0];
|
|
valueToXor = b;
|
|
c = Clipperz.Crypto.ECC.BinaryField.Value._bitSize(a);
|
|
for (i=0; i<c; i++) {
|
|
if (Clipperz.Crypto.ECC.BinaryField.Value._isBitSet(a, i) === true) {
|
|
Clipperz.Crypto.ECC.BinaryField.Value._overwriteXor(result, valueToXor);
|
|
}
|
|
valueToXor = Clipperz.Crypto.ECC.BinaryField.Value._overwriteShiftLeft(valueToXor, 1);
|
|
}
|
|
result = this._module(result);
|
|
|
|
return result;
|
|
},
|
|
|
|
'multiply': function(a, b) {
|
|
return new Clipperz.Crypto.ECC.BinaryField.Value(this._multiply(a._value, b._value));
|
|
},
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
'_fastMultiply': function(a, b) {
|
|
var result;
|
|
var B;
|
|
var i,c;
|
|
|
|
result = [0];
|
|
B = b.slice(0); // Is this array copy avoidable?
|
|
c = 32;
|
|
for (i=0; i<c; i++) {
|
|
var ii, cc;
|
|
|
|
cc = a.length;
|
|
for (ii=0; ii<cc; ii++) {
|
|
if (((a[ii] >>> i) & 0x01) == 1) {
|
|
Clipperz.Crypto.ECC.BinaryField.Value._overwriteXor(result, B, ii);
|
|
}
|
|
}
|
|
|
|
if (i < (c-1)) {
|
|
B = Clipperz.Crypto.ECC.BinaryField.Value._overwriteShiftLeft(B, 1);
|
|
}
|
|
}
|
|
result = this._module(result);
|
|
|
|
return result;
|
|
},
|
|
|
|
'fastMultiply': function(a, b) {
|
|
return new Clipperz.Crypto.ECC.BinaryField.Value(this._fastMultiply(a._value, b._value));
|
|
},
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// Guide to Elliptic Curve Cryptography
|
|
// Darrel Hankerson, Alfred Menezes, Scott Vanstone
|
|
// - Pag: 49, Alorithm 2.34
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
'_square': function(aValue) {
|
|
var result;
|
|
var value;
|
|
var c,i;
|
|
var precomputedValues;
|
|
|
|
value = aValue;
|
|
result = new Array(value.length * 2);
|
|
precomputedValues = Clipperz.Crypto.ECC.BinaryField.FiniteField.squarePrecomputedBytes;
|
|
|
|
c = value.length;
|
|
for (i=0; i<c; i++) {
|
|
result[i*2] = precomputedValues[(value[i] & 0x000000ff)];
|
|
result[i*2] |= ((precomputedValues[(value[i] & 0x0000ff00) >>> 8]) << 16);
|
|
|
|
result[i*2 + 1] = precomputedValues[(value[i] & 0x00ff0000) >>> 16];
|
|
result[i*2 + 1] |= ((precomputedValues[(value[i] & 0xff000000) >>> 24]) << 16);
|
|
}
|
|
|
|
return this._module(result);
|
|
},
|
|
|
|
'square': function(aValue) {
|
|
return new Clipperz.Crypto.ECC.BinaryField.Value(this._square(aValue._value));
|
|
},
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
'_inverse': function(aValue) {
|
|
var result;
|
|
var b, c;
|
|
var u, v;
|
|
|
|
// b = Clipperz.Crypto.ECC.BinaryField.Value.I._value;
|
|
b = [1];
|
|
// c = Clipperz.Crypto.ECC.BinaryField.Value.O._value;
|
|
c = [0];
|
|
u = this._module(aValue);
|
|
v = this.modulus()._value.slice(0);
|
|
|
|
while (Clipperz.Crypto.ECC.BinaryField.Value._bitSize(u) > 1) {
|
|
var bitDifferenceSize;
|
|
|
|
bitDifferenceSize = Clipperz.Crypto.ECC.BinaryField.Value._bitSize(u) - Clipperz.Crypto.ECC.BinaryField.Value._bitSize(v);
|
|
if (bitDifferenceSize < 0) {
|
|
var swap;
|
|
|
|
swap = u;
|
|
u = v;
|
|
v = swap;
|
|
|
|
swap = c;
|
|
c = b;
|
|
b = swap;
|
|
|
|
bitDifferenceSize = -bitDifferenceSize;
|
|
}
|
|
|
|
u = this._add(u, Clipperz.Crypto.ECC.BinaryField.Value._shiftLeft(v, bitDifferenceSize));
|
|
b = this._add(b, Clipperz.Crypto.ECC.BinaryField.Value._shiftLeft(c, bitDifferenceSize));
|
|
// this._overwriteAdd(u, Clipperz.Crypto.ECC.BinaryField.Value._shiftLeft(v, bitDifferenceSize));
|
|
// this._overwriteAdd(b, Clipperz.Crypto.ECC.BinaryField.Value._shiftLeft(c, bitDifferenceSize));
|
|
}
|
|
|
|
result = this._module(b);
|
|
|
|
return result;
|
|
},
|
|
|
|
'inverse': function(aValue) {
|
|
return new Clipperz.Crypto.ECC.BinaryField.Value(this._inverse(aValue._value));
|
|
},
|
|
|
|
//-----------------------------------------------------------------------------
|
|
__syntaxFix__: "syntax fix"
|
|
});
|
|
|
|
|
|
Clipperz.Crypto.ECC.BinaryField.FiniteField.squarePrecomputedBytes = [
|
|
0x0000, // 0 = 0000 0000 -> 0000 0000 0000 0000
|
|
0x0001, // 1 = 0000 0001 -> 0000 0000 0000 0001
|
|
0x0004, // 2 = 0000 0010 -> 0000 0000 0000 0100
|
|
0x0005, // 3 = 0000 0011 -> 0000 0000 0000 0101
|
|
0x0010, // 4 = 0000 0100 -> 0000 0000 0001 0000
|
|
0x0011, // 5 = 0000 0101 -> 0000 0000 0001 0001
|
|
0x0014, // 6 = 0000 0110 -> 0000 0000 0001 0100
|
|
0x0015, // 7 = 0000 0111 -> 0000 0000 0001 0101
|
|
0x0040, // 8 = 0000 1000 -> 0000 0000 0100 0000
|
|
0x0041, // 9 = 0000 1001 -> 0000 0000 0100 0001
|
|
0x0044, // 10 = 0000 1010 -> 0000 0000 0100 0100
|
|
0x0045, // 11 = 0000 1011 -> 0000 0000 0100 0101
|
|
0x0050, // 12 = 0000 1100 -> 0000 0000 0101 0000
|
|
0x0051, // 13 = 0000 1101 -> 0000 0000 0101 0001
|
|
0x0054, // 14 = 0000 1110 -> 0000 0000 0101 0100
|
|
0x0055, // 15 = 0000 1111 -> 0000 0000 0101 0101
|
|
|
|
0x0100, // 16 = 0001 0000 -> 0000 0001 0000 0000
|
|
0x0101, // 17 = 0001 0001 -> 0000 0001 0000 0001
|
|
0x0104, // 18 = 0001 0010 -> 0000 0001 0000 0100
|
|
0x0105, // 19 = 0001 0011 -> 0000 0001 0000 0101
|
|
0x0110, // 20 = 0001 0100 -> 0000 0001 0001 0000
|
|
0x0111, // 21 = 0001 0101 -> 0000 0001 0001 0001
|
|
0x0114, // 22 = 0001 0110 -> 0000 0001 0001 0100
|
|
0x0115, // 23 = 0001 0111 -> 0000 0001 0001 0101
|
|
0x0140, // 24 = 0001 1000 -> 0000 0001 0100 0000
|
|
0x0141, // 25 = 0001 1001 -> 0000 0001 0100 0001
|
|
0x0144, // 26 = 0001 1010 -> 0000 0001 0100 0100
|
|
0x0145, // 27 = 0001 1011 -> 0000 0001 0100 0101
|
|
0x0150, // 28 = 0001 1100 -> 0000 0001 0101 0000
|
|
0x0151, // 28 = 0001 1101 -> 0000 0001 0101 0001
|
|
0x0154, // 30 = 0001 1110 -> 0000 0001 0101 0100
|
|
0x0155, // 31 = 0001 1111 -> 0000 0001 0101 0101
|
|
|
|
0x0400, // 32 = 0010 0000 -> 0000 0100 0000 0000
|
|
0x0401, // 33 = 0010 0001 -> 0000 0100 0000 0001
|
|
0x0404, // 34 = 0010 0010 -> 0000 0100 0000 0100
|
|
0x0405, // 35 = 0010 0011 -> 0000 0100 0000 0101
|
|
0x0410, // 36 = 0010 0100 -> 0000 0100 0001 0000
|
|
0x0411, // 37 = 0010 0101 -> 0000 0100 0001 0001
|
|
0x0414, // 38 = 0010 0110 -> 0000 0100 0001 0100
|
|
0x0415, // 39 = 0010 0111 -> 0000 0100 0001 0101
|
|
0x0440, // 40 = 0010 1000 -> 0000 0100 0100 0000
|
|
0x0441, // 41 = 0010 1001 -> 0000 0100 0100 0001
|
|
0x0444, // 42 = 0010 1010 -> 0000 0100 0100 0100
|
|
0x0445, // 43 = 0010 1011 -> 0000 0100 0100 0101
|
|
0x0450, // 44 = 0010 1100 -> 0000 0100 0101 0000
|
|
0x0451, // 45 = 0010 1101 -> 0000 0100 0101 0001
|
|
0x0454, // 46 = 0010 1110 -> 0000 0100 0101 0100
|
|
0x0455, // 47 = 0010 1111 -> 0000 0100 0101 0101
|
|
|
|
0x0500, // 48 = 0011 0000 -> 0000 0101 0000 0000
|
|
0x0501, // 49 = 0011 0001 -> 0000 0101 0000 0001
|
|
0x0504, // 50 = 0011 0010 -> 0000 0101 0000 0100
|
|
0x0505, // 51 = 0011 0011 -> 0000 0101 0000 0101
|
|
0x0510, // 52 = 0011 0100 -> 0000 0101 0001 0000
|
|
0x0511, // 53 = 0011 0101 -> 0000 0101 0001 0001
|
|
0x0514, // 54 = 0011 0110 -> 0000 0101 0001 0100
|
|
0x0515, // 55 = 0011 0111 -> 0000 0101 0001 0101
|
|
0x0540, // 56 = 0011 1000 -> 0000 0101 0100 0000
|
|
0x0541, // 57 = 0011 1001 -> 0000 0101 0100 0001
|
|
0x0544, // 58 = 0011 1010 -> 0000 0101 0100 0100
|
|
0x0545, // 59 = 0011 1011 -> 0000 0101 0100 0101
|
|
0x0550, // 60 = 0011 1100 -> 0000 0101 0101 0000
|
|
0x0551, // 61 = 0011 1101 -> 0000 0101 0101 0001
|
|
0x0554, // 62 = 0011 1110 -> 0000 0101 0101 0100
|
|
0x0555, // 63 = 0011 1111 -> 0000 0101 0101 0101
|
|
|
|
0x1000, // 64 = 0100 0000 -> 0001 0000 0000 0000
|
|
0x1001, // 65 = 0100 0001 -> 0001 0000 0000 0001
|
|
0x1004, // 66 = 0100 0010 -> 0001 0000 0000 0100
|
|
0x1005, // 67 = 0100 0011 -> 0001 0000 0000 0101
|
|
0x1010, // 68 = 0100 0100 -> 0001 0000 0001 0000
|
|
0x1011, // 69 = 0100 0101 -> 0001 0000 0001 0001
|
|
0x1014, // 70 = 0100 0110 -> 0001 0000 0001 0100
|
|
0x1015, // 71 = 0100 0111 -> 0001 0000 0001 0101
|
|
0x1040, // 72 = 0100 1000 -> 0001 0000 0100 0000
|
|
0x1041, // 73 = 0100 1001 -> 0001 0000 0100 0001
|
|
0x1044, // 74 = 0100 1010 -> 0001 0000 0100 0100
|
|
0x1045, // 75 = 0100 1011 -> 0001 0000 0100 0101
|
|
0x1050, // 76 = 0100 1100 -> 0001 0000 0101 0000
|
|
0x1051, // 77 = 0100 1101 -> 0001 0000 0101 0001
|
|
0x1054, // 78 = 0100 1110 -> 0001 0000 0101 0100
|
|
0x1055, // 79 = 0100 1111 -> 0001 0000 0101 0101
|
|
|
|
0x1100, // 80 = 0101 0000 -> 0001 0001 0000 0000
|
|
0x1101, // 81 = 0101 0001 -> 0001 0001 0000 0001
|
|
0x1104, // 82 = 0101 0010 -> 0001 0001 0000 0100
|
|
0x1105, // 83 = 0101 0011 -> 0001 0001 0000 0101
|
|
0x1110, // 84 = 0101 0100 -> 0001 0001 0001 0000
|
|
0x1111, // 85 = 0101 0101 -> 0001 0001 0001 0001
|
|
0x1114, // 86 = 0101 0110 -> 0001 0001 0001 0100
|
|
0x1115, // 87 = 0101 0111 -> 0001 0001 0001 0101
|
|
0x1140, // 88 = 0101 1000 -> 0001 0001 0100 0000
|
|
0x1141, // 89 = 0101 1001 -> 0001 0001 0100 0001
|
|
0x1144, // 90 = 0101 1010 -> 0001 0001 0100 0100
|
|
0x1145, // 91 = 0101 1011 -> 0001 0001 0100 0101
|
|
0x1150, // 92 = 0101 1100 -> 0001 0001 0101 0000
|
|
0x1151, // 93 = 0101 1101 -> 0001 0001 0101 0001
|
|
0x1154, // 94 = 0101 1110 -> 0001 0001 0101 0100
|
|
0x1155, // 95 = 0101 1111 -> 0001 0001 0101 0101
|
|
|
|
0x1400, // 96 = 0110 0000 -> 0001 0100 0000 0000
|
|
0x1401, // 97 = 0110 0001 -> 0001 0100 0000 0001
|
|
0x1404, // 98 = 0110 0010 -> 0001 0100 0000 0100
|
|
0x1405, // 99 = 0110 0011 -> 0001 0100 0000 0101
|
|
0x1410, // 100 = 0110 0100 -> 0001 0100 0001 0000
|
|
0x1411, // 101 = 0110 0101 -> 0001 0100 0001 0001
|
|
0x1414, // 102 = 0110 0110 -> 0001 0100 0001 0100
|
|
0x1415, // 103 = 0110 0111 -> 0001 0100 0001 0101
|
|
0x1440, // 104 = 0110 1000 -> 0001 0100 0100 0000
|
|
0x1441, // 105 = 0110 1001 -> 0001 0100 0100 0001
|
|
0x1444, // 106 = 0110 1010 -> 0001 0100 0100 0100
|
|
0x1445, // 107 = 0110 1011 -> 0001 0100 0100 0101
|
|
0x1450, // 108 = 0110 1100 -> 0001 0100 0101 0000
|
|
0x1451, // 109 = 0110 1101 -> 0001 0100 0101 0001
|
|
0x1454, // 110 = 0110 1110 -> 0001 0100 0101 0100
|
|
0x1455, // 111 = 0110 1111 -> 0001 0100 0101 0101
|
|
|
|
0x1500, // 112 = 0111 0000 -> 0001 0101 0000 0000
|
|
0x1501, // 113 = 0111 0001 -> 0001 0101 0000 0001
|
|
0x1504, // 114 = 0111 0010 -> 0001 0101 0000 0100
|
|
0x1505, // 115 = 0111 0011 -> 0001 0101 0000 0101
|
|
0x1510, // 116 = 0111 0100 -> 0001 0101 0001 0000
|
|
0x1511, // 117 = 0111 0101 -> 0001 0101 0001 0001
|
|
0x1514, // 118 = 0111 0110 -> 0001 0101 0001 0100
|
|
0x1515, // 119 = 0111 0111 -> 0001 0101 0001 0101
|
|
0x1540, // 120 = 0111 1000 -> 0001 0101 0100 0000
|
|
0x1541, // 121 = 0111 1001 -> 0001 0101 0100 0001
|
|
0x1544, // 122 = 0111 1010 -> 0001 0101 0100 0100
|
|
0x1545, // 123 = 0111 1011 -> 0001 0101 0100 0101
|
|
0x1550, // 124 = 0111 1100 -> 0001 0101 0101 0000
|
|
0x1551, // 125 = 0111 1101 -> 0001 0101 0101 0001
|
|
0x1554, // 126 = 0111 1110 -> 0001 0101 0101 0100
|
|
0x1555, // 127 = 0111 1111 -> 0001 0101 0101 0101
|
|
|
|
0x4000, // 128 = 1000 0000 -> 0100 0000 0000 0000
|
|
0x4001, // 129 = 1000 0001 -> 0100 0000 0000 0001
|
|
0x4004, // 130 = 1000 0010 -> 0100 0000 0000 0100
|
|
0x4005, // 131 = 1000 0011 -> 0100 0000 0000 0101
|
|
0x4010, // 132 = 1000 0100 -> 0100 0000 0001 0000
|
|
0x4011, // 133 = 1000 0101 -> 0100 0000 0001 0001
|
|
0x4014, // 134 = 1000 0110 -> 0100 0000 0001 0100
|
|
0x4015, // 135 = 1000 0111 -> 0100 0000 0001 0101
|
|
0x4040, // 136 = 1000 1000 -> 0100 0000 0100 0000
|
|
0x4041, // 137 = 1000 1001 -> 0100 0000 0100 0001
|
|
0x4044, // 138 = 1000 1010 -> 0100 0000 0100 0100
|
|
0x4045, // 139 = 1000 1011 -> 0100 0000 0100 0101
|
|
0x4050, // 140 = 1000 1100 -> 0100 0000 0101 0000
|
|
0x4051, // 141 = 1000 1101 -> 0100 0000 0101 0001
|
|
0x4054, // 142 = 1000 1110 -> 0100 0000 0101 0100
|
|
0x4055, // 143 = 1000 1111 -> 0100 0000 0101 0101
|
|
|
|
0x4100, // 144 = 1001 0000 -> 0100 0001 0000 0000
|
|
0x4101, // 145 = 1001 0001 -> 0100 0001 0000 0001
|
|
0x4104, // 146 = 1001 0010 -> 0100 0001 0000 0100
|
|
0x4105, // 147 = 1001 0011 -> 0100 0001 0000 0101
|
|
0x4110, // 148 = 1001 0100 -> 0100 0001 0001 0000
|
|
0x4111, // 149 = 1001 0101 -> 0100 0001 0001 0001
|
|
0x4114, // 150 = 1001 0110 -> 0100 0001 0001 0100
|
|
0x4115, // 151 = 1001 0111 -> 0100 0001 0001 0101
|
|
0x4140, // 152 = 1001 1000 -> 0100 0001 0100 0000
|
|
0x4141, // 153 = 1001 1001 -> 0100 0001 0100 0001
|
|
0x4144, // 154 = 1001 1010 -> 0100 0001 0100 0100
|
|
0x4145, // 155 = 1001 1011 -> 0100 0001 0100 0101
|
|
0x4150, // 156 = 1001 1100 -> 0100 0001 0101 0000
|
|
0x4151, // 157 = 1001 1101 -> 0100 0001 0101 0001
|
|
0x4154, // 158 = 1001 1110 -> 0100 0001 0101 0100
|
|
0x4155, // 159 = 1001 1111 -> 0100 0001 0101 0101
|
|
|
|
0x4400, // 160 = 1010 0000 -> 0100 0100 0000 0000
|
|
0x4401, // 161 = 1010 0001 -> 0100 0100 0000 0001
|
|
0x4404, // 162 = 1010 0010 -> 0100 0100 0000 0100
|
|
0x4405, // 163 = 1010 0011 -> 0100 0100 0000 0101
|
|
0x4410, // 164 = 1010 0100 -> 0100 0100 0001 0000
|
|
0x4411, // 165 = 1010 0101 -> 0100 0100 0001 0001
|
|
0x4414, // 166 = 1010 0110 -> 0100 0100 0001 0100
|
|
0x4415, // 167 = 1010 0111 -> 0100 0100 0001 0101
|
|
0x4440, // 168 = 1010 1000 -> 0100 0100 0100 0000
|
|
0x4441, // 169 = 1010 1001 -> 0100 0100 0100 0001
|
|
0x4444, // 170 = 1010 1010 -> 0100 0100 0100 0100
|
|
0x4445, // 171 = 1010 1011 -> 0100 0100 0100 0101
|
|
0x4450, // 172 = 1010 1100 -> 0100 0100 0101 0000
|
|
0x4451, // 173 = 1010 1101 -> 0100 0100 0101 0001
|
|
0x4454, // 174 = 1010 1110 -> 0100 0100 0101 0100
|
|
0x4455, // 175 = 1010 1111 -> 0100 0100 0101 0101
|
|
|
|
0x4500, // 176 = 1011 0000 -> 0100 0101 0000 0000
|
|
0x4501, // 177 = 1011 0001 -> 0100 0101 0000 0001
|
|
0x4504, // 178 = 1011 0010 -> 0100 0101 0000 0100
|
|
0x4505, // 179 = 1011 0011 -> 0100 0101 0000 0101
|
|
0x4510, // 180 = 1011 0100 -> 0100 0101 0001 0000
|
|
0x4511, // 181 = 1011 0101 -> 0100 0101 0001 0001
|
|
0x4514, // 182 = 1011 0110 -> 0100 0101 0001 0100
|
|
0x4515, // 183 = 1011 0111 -> 0100 0101 0001 0101
|
|
0x4540, // 184 = 1011 1000 -> 0100 0101 0100 0000
|
|
0x4541, // 185 = 1011 1001 -> 0100 0101 0100 0001
|
|
0x4544, // 186 = 1011 1010 -> 0100 0101 0100 0100
|
|
0x4545, // 187 = 1011 1011 -> 0100 0101 0100 0101
|
|
0x4550, // 188 = 1011 1100 -> 0100 0101 0101 0000
|
|
0x4551, // 189 = 1011 1101 -> 0100 0101 0101 0001
|
|
0x4554, // 190 = 1011 1110 -> 0100 0101 0101 0100
|
|
0x4555, // 191 = 1011 1111 -> 0100 0101 0101 0101
|
|
|
|
0x5000, // 192 = 1100 0000 -> 0101 0000 0000 0000
|
|
0x5001, // 193 = 1100 0001 -> 0101 0000 0000 0001
|
|
0x5004, // 194 = 1100 0010 -> 0101 0000 0000 0100
|
|
0x5005, // 195 = 1100 0011 -> 0101 0000 0000 0101
|
|
0x5010, // 196 = 1100 0100 -> 0101 0000 0001 0000
|
|
0x5011, // 197 = 1100 0101 -> 0101 0000 0001 0001
|
|
0x5014, // 198 = 1100 0110 -> 0101 0000 0001 0100
|
|
0x5015, // 199 = 1100 0111 -> 0101 0000 0001 0101
|
|
0x5040, // 200 = 1100 1000 -> 0101 0000 0100 0000
|
|
0x5041, // 201 = 1100 1001 -> 0101 0000 0100 0001
|
|
0x5044, // 202 = 1100 1010 -> 0101 0000 0100 0100
|
|
0x5045, // 203 = 1100 1011 -> 0101 0000 0100 0101
|
|
0x5050, // 204 = 1100 1100 -> 0101 0000 0101 0000
|
|
0x5051, // 205 = 1100 1101 -> 0101 0000 0101 0001
|
|
0x5054, // 206 = 1100 1110 -> 0101 0000 0101 0100
|
|
0x5055, // 207 = 1100 1111 -> 0101 0000 0101 0101
|
|
|
|
0x5100, // 208 = 1101 0000 -> 0101 0001 0000 0000
|
|
0x5101, // 209 = 1101 0001 -> 0101 0001 0000 0001
|
|
0x5104, // 210 = 1101 0010 -> 0101 0001 0000 0100
|
|
0x5105, // 211 = 1101 0011 -> 0101 0001 0000 0101
|
|
0x5110, // 212 = 1101 0100 -> 0101 0001 0001 0000
|
|
0x5111, // 213 = 1101 0101 -> 0101 0001 0001 0001
|
|
0x5114, // 214 = 1101 0110 -> 0101 0001 0001 0100
|
|
0x5115, // 215 = 1101 0111 -> 0101 0001 0001 0101
|
|
0x5140, // 216 = 1101 1000 -> 0101 0001 0100 0000
|
|
0x5141, // 217 = 1101 1001 -> 0101 0001 0100 0001
|
|
0x5144, // 218 = 1101 1010 -> 0101 0001 0100 0100
|
|
0x5145, // 219 = 1101 1011 -> 0101 0001 0100 0101
|
|
0x5150, // 220 = 1101 1100 -> 0101 0001 0101 0000
|
|
0x5151, // 221 = 1101 1101 -> 0101 0001 0101 0001
|
|
0x5154, // 222 = 1101 1110 -> 0101 0001 0101 0100
|
|
0x5155, // 223 = 1101 1111 -> 0101 0001 0101 0101
|
|
|
|
0x5400, // 224 = 1110 0000 -> 0101 0100 0000 0000
|
|
0x5401, // 225 = 1110 0001 -> 0101 0100 0000 0001
|
|
0x5404, // 226 = 1110 0010 -> 0101 0100 0000 0100
|
|
0x5405, // 227 = 1110 0011 -> 0101 0100 0000 0101
|
|
0x5410, // 228 = 1110 0100 -> 0101 0100 0001 0000
|
|
0x5411, // 229 = 1110 0101 -> 0101 0100 0001 0001
|
|
0x5414, // 230 = 1110 0110 -> 0101 0100 0001 0100
|
|
0x5415, // 231 = 1110 0111 -> 0101 0100 0001 0101
|
|
0x5440, // 232 = 1110 1000 -> 0101 0100 0100 0000
|
|
0x5441, // 233 = 1110 1001 -> 0101 0100 0100 0001
|
|
0x5444, // 234 = 1110 1010 -> 0101 0100 0100 0100
|
|
0x5445, // 235 = 1110 1011 -> 0101 0100 0100 0101
|
|
0x5450, // 236 = 1110 1100 -> 0101 0100 0101 0000
|
|
0x5451, // 237 = 1110 1101 -> 0101 0100 0101 0001
|
|
0x5454, // 238 = 1110 1110 -> 0101 0100 0101 0100
|
|
0x5455, // 239 = 1110 1111 -> 0101 0100 0101 0101
|
|
|
|
0x5500, // 240 = 1111 0000 -> 0101 0101 0000 0000
|
|
0x5501, // 241 = 1111 0001 -> 0101 0101 0000 0001
|
|
0x5504, // 242 = 1111 0010 -> 0101 0101 0000 0100
|
|
0x5505, // 243 = 1111 0011 -> 0101 0101 0000 0101
|
|
0x5510, // 244 = 1111 0100 -> 0101 0101 0001 0000
|
|
0x5511, // 245 = 1111 0101 -> 0101 0101 0001 0001
|
|
0x5514, // 246 = 1111 0110 -> 0101 0101 0001 0100
|
|
0x5515, // 247 = 1111 0111 -> 0101 0101 0001 0101
|
|
0x5540, // 248 = 1111 1000 -> 0101 0101 0100 0000
|
|
0x5541, // 249 = 1111 1001 -> 0101 0101 0100 0001
|
|
0x5544, // 250 = 1111 1010 -> 0101 0101 0100 0100
|
|
0x5545, // 251 = 1111 1011 -> 0101 0101 0100 0101
|
|
0x5550, // 252 = 1111 1100 -> 0101 0101 0101 0000
|
|
0x5551, // 253 = 1111 1101 -> 0101 0101 0101 0001
|
|
0x5554, // 254 = 1111 1110 -> 0101 0101 0101 0100
|
|
0x5555 // 255 = 1111 1111 -> 0101 0101 0101 0101
|
|
|
|
]
|