/* Copyright 2008-2018 Clipperz Srl This file is part of Clipperz, the online password manager. For further information about its features and functionalities please refer to http://www.clipperz.com. * Clipperz is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. * Clipperz is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. * You should have received a copy of the GNU Affero General Public License along with Clipperz. If not, see http://www.gnu.org/licenses/. */ if (typeof(Clipperz) == 'undefined') { Clipperz = {}; } if (typeof(Clipperz.Crypto) == 'undefined') { Clipperz.Crypto = {}; } if (typeof(Leemon) == 'undefined') { Leemon = {}; } if (typeof(Baird.Crypto) == 'undefined') { Baird.Crypto = {}; } if (typeof(Baird.Crypto.BigInt) == 'undefined') { Baird.Crypto.BigInt = {}; } //############################################################################# // Downloaded on March 05, 2007 from http://www.leemon.com/crypto/BigInt.js //############################################################################# //////////////////////////////////////////////////////////////////////////////////////// // Big Integer Library v. 5.0 // Created 2000, last modified 2006 // Leemon Baird // www.leemon.com // // This file is public domain. You can use it for any purpose without restriction. // I do not guarantee that it is correct, so use it at your own risk. If you use // it for something interesting, I'd appreciate hearing about it. If you find // any bugs or make any improvements, I'd appreciate hearing about those too. // It would also be nice if my name and address were left in the comments. // But none of that is required. // // This code defines a bigInt library for arbitrary-precision integers. // A bigInt is an array of integers storing the value in chunks of bpe bits, // little endian (buff[0] is the least significant word). // Negative bigInts are stored two's complement. // Some functions assume their parameters have at least one leading zero element. // Functions with an underscore at the end of the name have unpredictable behavior in case of overflow, // so the caller must make sure overflow won't happen. // For each function where a parameter is modified, that same // variable must not be used as another argument too. // So, you cannot square x by doing multMod_(x,x,n). // You must use squareMod_(x,n) instead, or do y=dup(x); multMod_(x,y,n). // // These functions are designed to avoid frequent dynamic memory allocation in the inner loop. // For most functions, if it needs a BigInt as a local variable it will actually use // a global, and will only allocate to it when it's not the right size. This ensures // that when a function is called repeatedly with same-sized parameters, it only allocates // memory on the first call. // // Note that for cryptographic purposes, the calls to Math.random() must // be replaced with calls to a better pseudorandom number generator. // // In the following, "bigInt" means a bigInt with at least one leading zero element, // and "integer" means a nonnegative integer less than radix. In some cases, integer // can be negative. Negative bigInts are 2s complement. // // The following functions do not modify their inputs, but dynamically allocate memory every time they are called: // // function bigInt2str(x,base) //convert a bigInt into a string in a given base, from base 2 up to base 95 // function dup(x) //returns a copy of bigInt x // function findPrimes(n) //return array of all primes less than integer n // function int2bigInt(t,n,m) //convert integer t to a bigInt with at least n bits and m array elements // function str2bigInt(s,b,n,m) //convert string s in base b to a bigInt with at least n bits and m array elements // function trim(x,k) //return a copy of x with exactly k leading zero elements // // The following functions do not modify their inputs, so there is never a problem with the result being too big: // // function bitSize(x) //returns how many bits long the bigInt x is, not counting leading zeros // function equals(x,y) //is the bigInt x equal to the bigint y? // function equalsInt(x,y) //is bigint x equal to integer y? // function greater(x,y) //is x>y? (x and y are nonnegative bigInts) // function greaterShift(x,y,shift)//is (x <<(shift*bpe)) > y? // function isZero(x) //is the bigInt x equal to zero? // function millerRabin(x,b) //does one round of Miller-Rabin base integer b say that bigInt x is possibly prime (as opposed to definitely composite)? // function modInt(x,n) //return x mod n for bigInt x and integer n. // function negative(x) //is bigInt x negative? // // The following functions do not modify their inputs, but allocate memory and call functions with underscores // // function add(x,y) //return (x+y) for bigInts x and y. // function addInt(x,n) //return (x+n) where x is a bigInt and n is an integer. // function expand(x,n) //return a copy of x with at least n elements, adding leading zeros if needed // function inverseMod(x,n) //return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null // function mod(x,n) //return a new bigInt equal to (x mod n) for bigInts x and n. // function mult(x,y) //return x*y for bigInts x and y. This is faster when y=1. // function randTruePrime_(ans,k) //do ans = a random k-bit true random prime (not just probable prime) with 1 in the msb. // function squareMod_(x,n) //do x=x*x mod n for bigInts x,n // function sub_(x,y) //do x=x-y for bigInts x and y. Negative answers will be 2s complement. // function subShift_(x,y,ys) //do x=x-(y<<(ys*bpe)). Negative answers will be 2s complement. // // The following functions are based on algorithms from the _Handbook of Applied Cryptography_ // powMod_() = algorithm 14.94, Montgomery exponentiation // eGCD_,inverseMod_() = algorithm 14.61, Binary extended GCD_ // GCD_() = algorothm 14.57, Lehmer's algorithm // mont_() = algorithm 14.36, Montgomery multiplication // divide_() = algorithm 14.20 Multiple-precision division // squareMod_() = algorithm 14.16 Multiple-precision squaring // randTruePrime_() = algorithm 4.62, Maurer's algorithm // millerRabin() = algorithm 4.24, Miller-Rabin algorithm // // Profiling shows: // randTruePrime_() spends: // 10% of its time in calls to powMod_() // 85% of its time in calls to millerRabin() // millerRabin() spends: // 99% of its time in calls to powMod_() (always with a base of 2) // powMod_() spends: // 94% of its time in calls to mont_() (almost always with x==y) // // This suggests there are several ways to speed up this library slightly: // - convert powMod_ to use a Montgomery form of k-ary window (or maybe a Montgomery form of sliding window) // -- this should especially focus on being fast when raising 2 to a power mod n // - convert randTruePrime_() to use a minimum r of 1/3 instead of 1/2 with the appropriate change to the test // - tune the parameters in randTruePrime_(), including c, m, and recLimit // - speed up the single loop in mont_() that takes 95% of the runtime, perhaps by reducing checking // within the loop when all the parameters are the same length. // // There are several ideas that look like they wouldn't help much at all: // - replacing trial division in randTruePrime_() with a sieve (that speeds up something taking almost no time anyway) // - increase bpe from 15 to 30 (that would help if we had a 32*32->64 multiplier, but not with JavaScript's 32*32->32) // - speeding up mont_(x,y,n,np) when x==y by doing a non-modular, non-Montgomery square // followed by a Montgomery reduction. The intermediate answer will be twice as long as x, so that // method would be slower. This is unfortunate because the code currently spends almost all of its time // doing mont_(x,x,...), both for randTruePrime_() and powMod_(). A faster method for Montgomery squaring // would have a large impact on the speed of randTruePrime_() and powMod_(). HAC has a couple of poorly-worded // sentences that seem to imply it's faster to do a non-modular square followed by a single // Montgomery reduction, but that's obviously wrong. //////////////////////////////////////////////////////////////////////////////////////// // // The whole library has been moved into the Baird.Crypto.BigInt scope by Giulio Cesare Solaroli // Baird.Crypto.BigInt.VERSION = "5.0"; Baird.Crypto.BigInt.NAME = "Baird.Crypto.BigInt"; MochiKit.Base.update(Baird.Crypto.BigInt, { //globals 'bpe': 0, //bits stored per array element 'mask': 0, //AND this with an array element to chop it down to bpe bits 'radix': Baird.Crypto.BigInt.mask + 1, //equals 2^bpe. A single 1 bit to the left of the last bit of mask. //the digits for converting to different bases 'digitsStr': '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_=!@#$%^&*()[]{}|;:,.<>/?`~ \\\'\"+-', //initialize the global variables for (bpe=0; (1<<(bpe+1)) > (1<>=1; //bpe=number of bits in one element of the array representing the bigInt mask=(1<0); j--); for (z=0,w=x[j]; w; (w>>=1),z++); z+=bpe*j; return z; }, //return a copy of x with at least n elements, adding leading zeros if needed 'expand': function(x,n) { var ans=int2bigInt(0,(x.length>n ? x.length : n)*bpe,0); copy_(ans,x); return ans; }, //return a k-bit true random prime using Maurer's algorithm. 'randTruePrime': function(k) { var ans=int2bigInt(0,k,0); randTruePrime_(ans,k); return trim(ans,1); }, //return a new bigInt equal to (x mod n) for bigInts x and n. 'mod': function(x,n) { var ans=dup(x); mod_(ans,n); return trim(ans,1); }, //return (x+n) where x is a bigInt and n is an integer. 'addInt': function(x,n) { var ans=expand(x,x.length+1); addInt_(ans,n); return trim(ans,1); }, //return x*y for bigInts x and y. This is faster when yy.length ? x.length+1 : y.length+1)); sub_(ans,y); return trim(ans,1); }, //return (x+y) for bigInts x and y. 'add': function(x,y) { var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1)); add_(ans,y); return trim(ans,1); }, //return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null 'inverseMod': function(x,n) { var ans=expand(x,n.length); var s; s=inverseMod_(ans,n); return s ? trim(ans,1) : null; }, //return (x*y mod n) for bigInts x,y,n. For greater speed, let y>1))-1; //pm is binary number with all ones, just over sqrt(2^k) copyInt_(ans,0); for (dd=1;dd;) { dd=0; ans[0]= 1 | (1<<(k-1)) | Math.floor(Math.random()*(1<2*m) //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits for (r=1; k-k*r<=m; ) r=pows[Math.floor(Math.random()*512)]; //r=Math.pow(2,Math.random()-1); else r=.5; //simulation suggests the more complex algorithm using r=.333 is only slightly faster. recSize=Math.floor(r*k)+1; randTruePrime_(s_q,recSize); copyInt_(s_i2,0); s_i2[Math.floor((k-2)/bpe)] |= (1<<((k-2)%bpe)); //s_i2=2^(k-2) divide_(s_i2,s_q,s_i,s_rm); //s_i=floor((2^(k-1))/(2q)) z=bitSize(s_i); for (;;) { for (;;) { //generate z-bit numbers until one falls in the range [0,s_i-1] randBigInt_(s_R,z,0); if (greater(s_i,s_R)) break; } //now s_R is in the range [0,s_i-1] addInt_(s_R,1); //now s_R is in the range [1,s_i] add_(s_R,s_i); //now s_R is in the range [s_i+1,2*s_i] copy_(s_n,s_q); mult_(s_n,s_R); multInt_(s_n,2); addInt_(s_n,1); //s_n=2*s_R*s_q+1 copy_(s_r2,s_R); multInt_(s_r2,2); //s_r2=2*s_R //check s_n for divisibility by small primes up to B for (divisible=0,j=0; (j0); j--); //strip leading zeros for (zz=0,w=s_n[j]; w; (w>>=1),zz++); zz+=bpe*j; //zz=number of bits in s_n, ignoring leading zeros for (;;) { //generate z-bit numbers until one falls in the range [0,s_n-1] randBigInt_(s_a,zz,0); if (greater(s_n,s_a)) break; } //now s_a is in the range [0,s_n-1] addInt_(s_n,3); //now s_a is in the range [0,s_n-4] addInt_(s_a,2); //now s_a is in the range [2,s_n-2] copy_(s_b,s_a); copy_(s_n1,s_n); addInt_(s_n1,-1); powMod_(s_b,s_n1,s_n); //s_b=s_a^(s_n-1) modulo s_n addInt_(s_b,-1); if (isZero(s_b)) { copy_(s_b,s_a); powMod_(s_b,s_r2,s_n); addInt_(s_b,-1); copy_(s_aa,s_n); copy_(s_d,s_b); GCD_(s_d,s_n); //if s_b and s_n are relatively prime, then s_n is a prime if (equalsInt(s_d,1)) { copy_(ans,s_aa); return; //if we've made it this far, then s_n is absolutely guaranteed to be prime } } } } }, //set b to an n-bit random BigInt. If s=1, then nth bit (most significant bit) is set to 1. //array b must be big enough to hold the result. Must have n>=1 'randBigInt_': function(b,n,s) { var i,a; for (i=0;i=0;i--); //find most significant element of x xp=x[i]; yp=y[i]; A=1; B=0; C=0; D=1; while ((yp+C) && (yp+D)) { q =Math.floor((xp+A)/(yp+C)); qp=Math.floor((xp+B)/(yp+D)); if (q!=qp) break; t= A-q*C; A=C; C=t; // do (A,B,xp, C,D,yp) = (C,D,yp, A,B,xp) - q*(0,0,0, C,D,yp) t= B-q*D; B=D; D=t; t=xp-q*yp; xp=yp; yp=t; } if (B) { copy_(T,x); linComb_(x,y,A,B); //x=A*x+B*y linComb_(y,T,D,C); //y=D*y+C*T } else { mod_(x,y); copy_(T,x); copy_(x,y); copy_(y,T); } } if (y[0]==0) return; t=modInt(x,y[0]); copyInt_(x,y[0]); y[0]=t; while (y[0]) { x[0]%=y[0]; t=x[0]; x[0]=y[0]; y[0]=t; } }, //do x=x**(-1) mod n, for bigInts x and n. //If no inverse exists, it sets x to zero and returns 0, else it returns 1. //The x array must be at least as large as the n array. function inverseMod_(x,n) { var k=1+2*Math.max(x.length,n.length); if(!(x[0]&1) && !(n[0]&1)) { //if both inputs are even, then inverse doesn't exist copyInt_(x,0); return 0; } if (eg_u.length!=k) { eg_u=new Array(k); eg_v=new Array(k); eg_A=new Array(k); eg_B=new Array(k); eg_C=new Array(k); eg_D=new Array(k); } copy_(eg_u,x); copy_(eg_v,n); copyInt_(eg_A,1); copyInt_(eg_B,0); copyInt_(eg_C,0); copyInt_(eg_D,1); for (;;) { while(!(eg_u[0]&1)) { //while eg_u is even halve_(eg_u); if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if eg_A==eg_B==0 mod 2 halve_(eg_A); halve_(eg_B); } else { add_(eg_A,n); halve_(eg_A); sub_(eg_B,x); halve_(eg_B); } } while (!(eg_v[0]&1)) { //while eg_v is even halve_(eg_v); if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if eg_C==eg_D==0 mod 2 halve_(eg_C); halve_(eg_D); } else { add_(eg_C,n); halve_(eg_C); sub_(eg_D,x); halve_(eg_D); } } if (!greater(eg_v,eg_u)) { //eg_v <= eg_u sub_(eg_u,eg_v); sub_(eg_A,eg_C); sub_(eg_B,eg_D); } else { //eg_v > eg_u sub_(eg_v,eg_u); sub_(eg_C,eg_A); sub_(eg_D,eg_B); } if (equalsInt(eg_u,0)) { if (negative(eg_C)) //make sure answer is nonnegative add_(eg_C,n); copy_(x,eg_C); if (!equalsInt(eg_v,1)) { //if GCD_(x,n)!=1, then there is no inverse copyInt_(x,0); return 0; } return 1; } } } //return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse function inverseModInt_(x,n) { var a=1,b=0,t; for (;;) { if (x==1) return a; if (x==0) return 0; b-=a*Math.floor(n/x); n%=x; if (n==1) return b; //to avoid negatives, change this b to n-b, and each -= to += if (n==0) return 0; a-=b*Math.floor(x/n); x%=n; } } //Given positive bigInts x and y, change the bigints v, a, and b to positive bigInts such that: // v = GCD_(x,y) = a*x-b*y //The bigInts v, a, b, must have exactly as many elements as the larger of x and y. function eGCD_(x,y,v,a,b) { var g=0; var k=Math.max(x.length,y.length); if (eg_u.length!=k) { eg_u=new Array(k); eg_A=new Array(k); eg_B=new Array(k); eg_C=new Array(k); eg_D=new Array(k); } while(!(x[0]&1) && !(y[0]&1)) { //while x and y both even halve_(x); halve_(y); g++; } copy_(eg_u,x); copy_(v,y); copyInt_(eg_A,1); copyInt_(eg_B,0); copyInt_(eg_C,0); copyInt_(eg_D,1); for (;;) { while(!(eg_u[0]&1)) { //while u is even halve_(eg_u); if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if A==B==0 mod 2 halve_(eg_A); halve_(eg_B); } else { add_(eg_A,y); halve_(eg_A); sub_(eg_B,x); halve_(eg_B); } } while (!(v[0]&1)) { //while v is even halve_(v); if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if C==D==0 mod 2 halve_(eg_C); halve_(eg_D); } else { add_(eg_C,y); halve_(eg_C); sub_(eg_D,x); halve_(eg_D); } } if (!greater(v,eg_u)) { //v<=u sub_(eg_u,v); sub_(eg_A,eg_C); sub_(eg_B,eg_D); } else { //v>u sub_(v,eg_u); sub_(eg_C,eg_A); sub_(eg_D,eg_B); } if (equalsInt(eg_u,0)) { if (negative(eg_C)) { //make sure a (C)is nonnegative add_(eg_C,y); sub_(eg_D,x); } multInt_(eg_D,-1); ///make sure b (D) is nonnegative copy_(a,eg_C); copy_(b,eg_D); leftShift_(v,g); return; } } } //is bigInt x negative? function negative(x) { return ((x[x.length-1]>>(bpe-1))&1); } //is (x << (shift*bpe)) > y? //x and y are nonnegative bigInts //shift is a nonnegative integer function greaterShift(x,y,shift) { var kx=x.length, ky=y.length; k=((kx+shift)=0; i++) if (x[i]>0) return 1; //if there are nonzeros in x to the left of the first column of y, then x is bigger for (i=kx-1+shift; i0) return 0; //if there are nonzeros in y to the left of the first column of x, then x is not bigger for (i=k-1; i>=shift; i--) if (x[i-shift]>y[i]) return 1; else if (x[i-shift] y? (x and y both nonnegative) function greater(x,y) { var i; var k=(x.length=0;i--) if (x[i]>y[i]) return 1; else if (x[i]ky;kx--); //normalize: ensure the most significant element of y has its highest bit set b=y[ky-1]; for (a=0; b; a++) b>>=1; a=bpe-a; //a is how many bits to shift so that the high order bit of y is leftmost in its array element leftShift_(y,a); //multiply both by 1<=ky; i--) { if (r[i]==y[ky-1]) q[i-ky]=mask; else q[i-ky]=Math.floor((r[i]*radix+r[i-1])/y[ky-1]); //The following for(;;) loop is equivalent to the commented while loop, //except that the uncommented version avoids overflow. //The commented loop comes from HAC, which assumes r[-1]==y[-1]==0 // while (q[i-ky]*(y[ky-1]*radix+y[ky-2]) > r[i]*radix*radix+r[i-1]*radix+r[i-2]) // q[i-ky]--; for (;;) { y2=(ky>1 ? y[ky-2] : 0)*q[i-ky]; c=y2>>bpe; y2=y2 & mask; y1=c+q[i-ky]*y[ky-1]; c=y1>>bpe; y1=y1 & mask; if (c==r[i] ? y1==r[i-1] ? y2>(i>1 ? r[i-2] : 0) : y1>r[i-1] : c>r[i]) q[i-ky]--; else break; } linCombShift_(r,y,-q[i-ky],i-ky); //r=r-q[i-ky]*leftShift_(y,i-ky) if (negative(r)) { addShift_(r,y,i-ky); //r=r+leftShift_(y,i-ky) q[i-ky]--; } } rightShift_(y,a); //undo the normalization step rightShift_(r,a); //undo the normalization step } //do carries and borrows so each element of the bigInt x fits in bpe bits. function carry_(x) { var i,k,c,b; k=x.length; c=0; for (i=0;i>bpe); c+=b*radix; } x[i]=c & mask; c=(c>>bpe)-b; } } //return x mod n for bigInt x and integer n. function modInt(x,n) { var i,c=0; for (i=x.length-1; i>=0; i--) c=(c*radix+x[i])%n; return c; } //convert the integer t into a bigInt with at least the given number of bits. //the returned array stores the bigInt in bpe-bit chunks, little endian (buff[0] is least significant word) //Pad the array with leading zeros so that it has at least minSize elements. //There will always be at least one leading 0 element. function int2bigInt(t,bits,minSize) { var i,k; k=Math.ceil(bits/bpe)+1; k=minSize>k ? minSize : k; buff=new Array(k); copyInt_(buff,t); return buff; } //return the bigInt given a string representation in a given base. //Pad the array with leading zeros so that it has at least minSize elements. //If base=-1, then it reads in a space-separated list of array elements in decimal. //The array will always have at least one leading zero, unless base=-1. function str2bigInt(s,base,minSize) { var d, i, j, x, y, kk; var k=s.length; if (base==-1) { //comma-separated list of array elements in decimal x=new Array(0); for (;;) { y=new Array(x.length+1); for (i=0;i=36) //convert lowercase to uppercase if base<=36 d-=26; if (d=0) { //ignore illegal characters multInt_(x,base); addInt_(x,d); } } for (k=x.length;k>0 && !x[k-1];k--); //strip off leading zeros k=minSize>k+1 ? minSize : k+1; y=new Array(k); kk=ky.length) { for (;i0;i--) s+=x[i]+','; s+=x[0]; } else { //return it in the given base while (!isZero(s6)) { t=divInt_(s6,base); //t=s6 % base; s6=floor(s6/base); s=digitsStr.substring(t,t+1)+s; } } if (s.length==0) s="0"; return s; } //returns a duplicate of bigInt x function dup(x) { var i; buff=new Array(x.length); copy_(buff,x); return buff; } //do x=y on bigInts x and y. x must be an array at least as big as y (not counting the leading zeros in y). function copy_(x,y) { var i; var k=x.length>=bpe; } } //do x=x+n where x is a bigInt and n is an integer. //x must be large enough to hold the result. function addInt_(x,n) { var i,k,c,b; x[0]+=n; k=x.length; c=0; for (i=0;i>bpe); c+=b*radix; } x[i]=c & mask; c=(c>>bpe)-b; if (!c) return; //stop carrying as soon as the carry_ is zero } } //right shift bigInt x by n bits. 0 <= n < bpe. function rightShift_(x,n) { var i; var k=Math.floor(n/bpe); if (k) { for (i=0;i>n)); } x[i]>>=n; } //do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement function halve_(x) { var i; for (i=0;i>1)); } x[i]=(x[i]>>1) | (x[i] & (radix>>1)); //most significant bit stays the same } //left shift bigInt x by n bits. function leftShift_(x,n) { var i; var k=Math.floor(n/bpe); if (k) { for (i=x.length; i>=k; i--) //left shift x by k elements x[i]=x[i-k]; for (;i>=0;i--) x[i]=0; n%=bpe; } if (!n) return; for (i=x.length-1;i>0;i--) { x[i]=mask & ((x[i]<>(bpe-n))); } x[i]=mask & (x[i]<>bpe); c+=b*radix; } x[i]=c & mask; c=(c>>bpe)-b; } } //do x=floor(x/n) for bigInt x and integer n, and return the remainder function divInt_(x,n) { var i,r=0,s; for (i=x.length-1;i>=0;i--) { s=r*radix+x[i]; x[i]=Math.floor(s/n); r=s%n; } return r; } //do the linear combination x=a*x+b*y for bigInts x and y, and integers a and b. //x must be large enough to hold the answer. function linComb_(x,y,a,b) { var i,c,k,kk; k=x.length>=bpe; } for (i=k;i>=bpe; } } //do the linear combination x=a*x+b*(y<<(ys*bpe)) for bigInts x and y, and integers a, b and ys. //x must be large enough to hold the answer. function linCombShift_(x,y,b,ys) { var i,c,k,kk; k=x.length>=bpe; } for (i=k;c && i>=bpe; } } //do x=x+(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys. //x must be large enough to hold the answer. function addShift_(x,y,ys) { var i,c,k,kk; k=x.length>=bpe; } for (i=k;c && i>=bpe; } } //do x=x-(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys. //x must be large enough to hold the answer. function subShift_(x,y,ys) { var i,c,k,kk; k=x.length>=bpe; } for (i=k;c && i>=bpe; } } //do x=x-y for bigInts x and y. //x must be large enough to hold the answer. //negative answers will be 2s complement function sub_(x,y) { var i,c,k,kk; k=x.length>=bpe; } for (i=k;c && i>=bpe; } } //do x=x+y for bigInts x and y. //x must be large enough to hold the answer. function add_(x,y) { var i,c,k,kk; k=x.length>=bpe; } for (i=k;c && i>=bpe; } } //do x=x*y for bigInts x and y. This is faster when y0 && !x[kx-1]; kx--); //ignore leading zeros in x k=kx>n.length ? 2*kx : 2*n.length; //k=# elements in the product, which is twice the elements in the larger of x and n if (s0.length!=k) s0=new Array(k); copyInt_(s0,0); for (i=0;i>=bpe; for (j=i+1;j>=bpe; } s0[i+kx]=c; } mod_(s0,n); copy_(x,s0); } //return x with exactly k leading zero elements function trim(x,k) { var i,y; for (i=x.length; i>0 && !x[i-1]; i--); y=new Array(i+k); copy_(y,x); return y; } //do x=x**y mod n, where x,y,n are bigInts and ** is exponentiation. 0**0=1. //this is faster when n is odd. x usually needs to have as many elements as n. function powMod_(x,y,n) { var k1,k2,kn,np; if(s7.length!=n.length) s7=dup(n); //for even modulus, use a simple square-and-multiply algorithm, //rather than using the more complex Montgomery algorithm. if ((n[0]&1)==0) { copy_(s7,x); copyInt_(x,1); while(!equalsInt(y,0)) { if (y[0]&1) multMod_(x,s7,n); divInt_(y,2); squareMod_(s7,n); } return; } //calculate np from n for the Montgomery multiplications copyInt_(s7,0); for (kn=n.length;kn>0 && !n[kn-1];kn--); np=radix-inverseModInt_(modInt(n,radix),radix); s7[kn]=1; multMod_(x ,s7,n); // x = x * 2**(kn*bp) mod n if (s3.length!=x.length) s3=dup(x); else copy_(s3,x); for (k1=y.length-1;k1>0 & !y[k1]; k1--); //k1=first nonzero element of y if (y[k1]==0) { //anything to the 0th power is 1 copyInt_(x,1); return; } for (k2=1<<(bpe-1);k2 && !(y[k1] & k2); k2>>=1); //k2=position of first 1 bit in y[k1] for (;;) { if (!(k2>>=1)) { //look at next bit of y k1--; if (k1<0) { mont_(x,one,n,np); return; } k2=1<<(bpe-1); } mont_(x,x,n,np); if (k2 & y[k1]) //if next bit is a 1 mont_(x,s3,n,np); } } //do x=x*y*Ri mod n for bigInts x,y,n, // where Ri = 2**(-kn*bpe) mod n, and kn is the // number of elements in the n array, not // counting leading zeros. //x must be large enough to hold the answer. //It's OK if x and y are the same variable. //must have: // x,y < n // n is odd // np = -(n^(-1)) mod radix function mont_(x,y,n,np) { var i,j,c,ui,t; var kn=n.length; var ky=y.length; if (sa.length!=kn) sa=new Array(kn); for (;kn>0 && n[kn-1]==0;kn--); //ignore leading zeros of n //this function sometimes gives wrong answers when the next line is uncommented //for (;ky>0 && y[ky-1]==0;ky--); //ignore leading zeros of y copyInt_(sa,0); //the following loop consumes 95% of the runtime for randTruePrime_() and powMod_() for large keys for (i=0; i> bpe; t=x[i]; //do sa=(sa+x[i]*y+ui*n)/b where b=2**bpe for (j=1;j>=bpe; } for (;j>=bpe; } sa[j-1]=c & mask; } if (!greater(n,sa)) sub_(sa,n); copy_(x,sa); } //############################################################################# //############################################################################# //############################################################################# //############################################################################# //############################################################################# //############################################################################# //############################################################################# //############################################################################# Clipperz.Crypto.BigInt = function (aValue, aBase) { var base; var value; if (typeof(aValue) == 'object') { this._internalValue = aValue; } else { if (typeof(aValue) == 'undefined') { value = "0"; } else { value = aValue + ""; } if (typeof(aBase) == 'undefined') { base = 10; } else { base = aBase; } this._internalValue = str2bigInt(value, base, 1, 1); } return this; } //============================================================================= MochiKit.Base.update(Clipperz.Crypto.BigInt.prototype, { //------------------------------------------------------------------------- 'internalValue': function () { return this._internalValue; }, //------------------------------------------------------------------------- 'isBigInt': true, //------------------------------------------------------------------------- 'toString': function(aBase) { return this.asString(aBase); }, //------------------------------------------------------------------------- 'asString': function (aBase) { var base; if (typeof(aBase) == 'undefined') { base = 10; } else { base = aBase; } return bigInt2str(this.internalValue(), base).toLowerCase(); }, //------------------------------------------------------------------------- 'equals': function (aValue) { var result; if (aValue.isBigInt) { result = equals(this.internalValue(), aValue.internalValue()); } else if (typeof(aValue) == "number") { result = equalsInt(this.internalValue(), aValue); } else { throw Clipperz.Crypt.BigInt.exception.UnknownType; } return result; }, //------------------------------------------------------------------------- 'add': function (aValue) { var result; if (aValue.isBigInt) { result = add(this.internalValue(), aValue.internalValue()); } else { result = addInt(this.internalValue(), aValue); } return new Clipperz.Crypto.BigInt(result); }, //------------------------------------------------------------------------- 'subtract': function (aValue) { var result; var value; if (aValue.isBigInt) { value = aValue; } else { value = new Clipperz.Crypto.BigInt(aValue); } result = sub(this.internalValue(), value.internalValue()); return new Clipperz.Crypto.BigInt(result); }, //------------------------------------------------------------------------- 'multiply': function (aValue, aModule) { var result; var value; if (aValue.isBigInt) { value = aValue; } else { value = new Clipperz.Crypto.BigInt(aValue); } if (typeof(aModule) == 'undefined') { result = mult(this.internalValue(), value.internalValue()); } else { result = multMod(this.internalValue(), value.internalValue(), aModule); } return new Clipperz.Crypto.BigInt(result); }, //------------------------------------------------------------------------- 'module': function (aModule) { var result; var module; if (aModule.isBigInt) { module = aModule; } else { module = new Clipperz.Crypto.BigInt(aModule); } result = mod(this.internalValue(), module.internalValue()); return new Clipperz.Crypto.BigInt(result); }, //------------------------------------------------------------------------- 'powerModule': function(aValue, aModule) { var result; var value; var module; if (aValue.isBigInt) { value = aValue; } else { value = new Clipperz.Crypto.BigInt(aValue); } if (aModule.isBigInt) { module = aModule; } else { module = new Clipperz.Crypto.BigInt(aModule); } if (aValue == -1) { result = inverseMod(this.internalValue(), module.internalValue()); } else { result = powMod(this.internalValue(), value.internalValue(), module.internalValue()); } return new Clipperz.Crypto.BigInt(result); }, //------------------------------------------------------------------------- 'bitSize': function() { return bitSize(this.internalValue()); }, //------------------------------------------------------------------------- __syntaxFix__: "syntax fix" }); //############################################################################# Clipperz.Crypto.BigInt.randomPrime = function(aBitSize) { return new Clipperz.Crypto.BigInt(randTruePrime(aBitSize)); } //############################################################################# //############################################################################# //############################################################################# Clipperz.Crypto.BigInt.equals = function(a, b) { return a.equals(b); } Clipperz.Crypto.BigInt.add = function(a, b) { return a.add(b); } Clipperz.Crypto.BigInt.subtract = function(a, b) { return a.subtract(b); } Clipperz.Crypto.BigInt.multiply = function(a, b, module) { return a.multiply(b, module); } Clipperz.Crypto.BigInt.module = function(a, module) { return a.module(module); } Clipperz.Crypto.BigInt.powerModule = function(a, b, module) { return a.powerModule(b, module); } Clipperz.Crypto.BigInt.exception = { UnknownType: new MochiKit.Base.NamedError("Clipperz.Crypto.BigInt.exception.UnknownType") }