password-manager/frontend/gamma/js/Clipperz/Crypto/ECC/StandardCurves.js

240 lines
12 KiB
JavaScript
Raw Normal View History

/*
Copyright 2008-2011 Clipperz Srl
This file is part of Clipperz's Javascript Crypto Library.
Javascript Crypto Library provides web developers with an extensive
and efficient set of cryptographic functions. The library aims to
obtain maximum execution speed while preserving modularity and
reusability.
For further information about its features and functionalities please
refer to http://www.clipperz.com
* Javascript Crypto Library is free software: you can redistribute
it and/or modify it under the terms of the GNU Affero General Public
License as published by the Free Software Foundation, either version
3 of the License, or (at your option) any later version.
* Javascript Crypto Library is distributed in the hope that it will
be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Affero General Public License for more details.
* You should have received a copy of the GNU Affero General Public
License along with Javascript Crypto Library. If not, see
<http://www.gnu.org/licenses/>.
*/
//try { if (typeof(Clipperz.Crypto.ECC.BinaryField.Curve) == 'undefined') { throw ""; }} catch (e) {
// throw "Clipperz.Crypto.ECC depends on Clipperz.Crypto.ECC.BinaryField.Curve!";
//}
//try { if (typeof(Clipperz.Crypto.ECC.Koblitz.Curve) == 'undefined') { throw ""; }} catch (e) {
// throw "Clipperz.Crypto.ECC depends on Clipperz.Crypto.ECC.Koblitz.Curve!";
//}
Clipperz.Crypto.ECC.StandardCurves = {};
MochiKit.Base.update(Clipperz.Crypto.ECC.StandardCurves, {
//==============================================================================
'_K571': null,
'K571': function() { // f(z) = z^571 + z^10 + z^5 + z^2 + 1
if ((Clipperz.Crypto.ECC.StandardCurves._K571 == null) && (typeof(Clipperz.Crypto.ECC.Koblitz.Curve) != 'undefined')) {
Clipperz.Crypto.ECC.StandardCurves._K571 = new Clipperz.Crypto.ECC.Koblitz.Curve({
modulus: new Clipperz.Crypto.ECC.Koblitz.Value('08000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000425', 16),
a: new Clipperz.Crypto.ECC.Koblitz.Value('0', 16),
b: new Clipperz.Crypto.ECC.Koblitz.Value('1', 16),
G: new Clipperz.Crypto.ECC.Koblitz.Point({
x: new Clipperz.Crypto.ECC.Koblitz.Value('026eb7a8 59923fbc 82189631 f8103fe4 ac9ca297 0012d5d4 60248048 01841ca4 43709584 93b205e6 47da304d b4ceb08c bbd1ba39 494776fb 988b4717 4dca88c7 e2945283 a01c8972', 16),
y: new Clipperz.Crypto.ECC.Koblitz.Value('0349dc80 7f4fbf37 4f4aeade 3bca9531 4dd58cec 9f307a54 ffc61efc 006d8a2c 9d4979c0 ac44aea7 4fbebbb9 f772aedc b620b01a 7ba7af1b 320430c8 591984f6 01cd4c14 3ef1c7a3', 16)
}),
r: new Clipperz.Crypto.ECC.Koblitz.Value('02000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 131850e1 f19a63e4 b391a8db 917f4138 b630d84b e5d63938 1e91deb4 5cfe778f 637c1001', 16),
h: new Clipperz.Crypto.ECC.Koblitz.Value('4', 16),
primeFactor: new Clipperz.Crypto.ECC.Koblitz.Value('02000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 131850e1 f19a63e4 b391a8db 917f4138 b630d84b e5d63938 1e91deb4 5cfe778f 637c1001', 16)
});
}
return Clipperz.Crypto.ECC.StandardCurves._K571;
},
//-----------------------------------------------------------------------------
'_K283': null,
'K283': function() { // f(z) = z^283 + z^12 + z^7 + z^5 + 1
if ((Clipperz.Crypto.ECC.StandardCurves._K283 == null) && (typeof(Clipperz.Crypto.ECC.Koblitz.Curve) != 'undefined')) {
Clipperz.Crypto.ECC.StandardCurves._K283 = new Clipperz.Crypto.ECC.Koblitz.Curve({
modulus: new Clipperz.Crypto.ECC.Koblitz.Value('08000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000010a1', 16),
a: new Clipperz.Crypto.ECC.Koblitz.Value('0', 16),
b: new Clipperz.Crypto.ECC.Koblitz.Value('1', 16),
G: new Clipperz.Crypto.ECC.Koblitz.Point({
x: new Clipperz.Crypto.ECC.Koblitz.Value('0503213f 78ca4488 3f1a3b81 62f188e5 53cd265f 23c1567a 16876913 b0c2ac24 58492836', 16),
y: new Clipperz.Crypto.ECC.Koblitz.Value('01ccda38 0f1c9e31 8d90f95d 07e5426f e87e45c0 e8184698 e4596236 4e341161 77dd2259', 16)
}),
r: new Clipperz.Crypto.ECC.Koblitz.Value('01ffffff ffffffff ffffffff ffffffff ffffe9ae 2ed07577 265dff7f 94451e06 1e163c61', 16),
h: new Clipperz.Crypto.ECC.Koblitz.Value('4', 16),
primeFactor: new Clipperz.Crypto.ECC.Koblitz.Value('01ffffff ffffffff ffffffff ffffffff ffffe9ae 2ed07577 265dff7f 94451e06 1e163c61', 16)
});
}
return Clipperz.Crypto.ECC.StandardCurves._K283;
},
//==============================================================================
'_B571': null,
'B571': function() { // f(z) = z^571 + z^10 + z^5 + z^2 + 1
if ((Clipperz.Crypto.ECC.StandardCurves._B571 == null) && (typeof(Clipperz.Crypto.ECC.BinaryField.Curve) != 'undefined')) {
Clipperz.Crypto.ECC.StandardCurves._B571 = new Clipperz.Crypto.ECC.BinaryField.Curve({
modulus: new Clipperz.Crypto.ECC.BinaryField.Value('08000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000425', 16),
a: new Clipperz.Crypto.ECC.BinaryField.Value('1', 16),
b: new Clipperz.Crypto.ECC.BinaryField.Value('02f40e7e 2221f295 de297117 b7f3d62f 5c6a97ff cb8ceff1 cd6ba8ce 4a9a18ad 84ffabbd 8efa5933 2be7ad67 56a66e29 4afd185a 78ff12aa 520e4de7 39baca0c 7ffeff7f 2955727a', 16),
G: new Clipperz.Crypto.ECC.BinaryField.Point({
x: new Clipperz.Crypto.ECC.BinaryField.Value('0303001d 34b85629 6c16c0d4 0d3cd775 0a93d1d2 955fa80a a5f40fc8 db7b2abd bde53950 f4c0d293 cdd711a3 5b67fb14 99ae6003 8614f139 4abfa3b4 c850d927 e1e7769c 8eec2d19', 16),
y: new Clipperz.Crypto.ECC.BinaryField.Value('037bf273 42da639b 6dccfffe b73d69d7 8c6c27a6 009cbbca 1980f853 3921e8a6 84423e43 bab08a57 6291af8f 461bb2a8 b3531d2f 0485c19b 16e2f151 6e23dd3c 1a4827af 1b8ac15b', 16)
}),
r: new Clipperz.Crypto.ECC.BinaryField.Value('03ffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff e661ce18 ff559873 08059b18 6823851e c7dd9ca1 161de93d 5174d66e 8382e9bb 2fe84e47', 16),
h: new Clipperz.Crypto.ECC.BinaryField.Value('2', 16)
// S: new Clipperz.Crypto.ECC.BinaryField.Value('2aa058f73a0e33ab486b0f610410c53a7f132310', 10),
// n: new Clipperz.Crypto.ECC.BinaryField.Value('03ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe661ce18ff55987308059b186823851ec7dd9ca1161de93d5174d66e8382e9bb2fe84e47', 16)
});
//-----------------------------------------------------------------------------
//
// Guide to Elliptic Curve Cryptography
// Darrel Hankerson, Alfred Menezes, Scott Vanstone
// - Pag: 56, Alorithm 2.45 (with a typo!!!)
//
//-----------------------------------------------------------------------------
//
// http://www.milw0rm.com/papers/136
//
// -------------------------------------------------------------------------
// Polynomial Reduction Algorithm Modulo f571
// -------------------------------------------------------------------------
//
// Input: Polynomial p(x) of degree 1140 or less, stored as
// an array of 2T machinewords.
// Output: p(x) mod f571(x)
//
// FOR i = T-1, ..., 0 DO
// SET X := P[i+T]
// P[i] := P[i] ^ (X<<5) ^ (X<<7) ^ (X<<10) ^ (X<<15)
// P[i+1] := P[i+1] ^ (X>>17) ^ (X>>22) ^ (X>>25) ^ (X>>27)
//
// SET X := P[T-1] >> 27
// P[0] := P[0] ^ X ^ (X<<2) ^ (X<<5) ^ (X<<10)
// P[T-1] := P[T-1] & 0x07ffffff
//
// RETURN P[T-1],...,P[0]
//
// -------------------------------------------------------------------------
//
Clipperz.Crypto.ECC.StandardCurves._B571.finiteField().slowModule = Clipperz.Crypto.ECC.StandardCurves._B571.finiteField().module;
Clipperz.Crypto.ECC.StandardCurves._B571.finiteField().module = function(aValue) {
var result;
if (aValue.bitSize() > 1140) {
MochiKit.Logging.logWarning("ECC.StandarCurves.B571.finiteField().module: falling back to default implementation");
result = Clipperz.Crypto.ECC.StandardCurves._B571.finiteField().slowModule(aValue);
} else {
var C, T;
var i;
//console.log(">>> binaryField.finiteField.(improved)module");
// C = aValue.value().slice(0);
C = aValue._value.slice(0);
for (i=35; i>=18; i--) {
T = C[i];
C[i-18] = (((C[i-18] ^ (T<<5) ^ (T<<7) ^ (T<<10) ^ (T<<15)) & 0xffffffff) >>> 0);
C[i-17] = ((C[i-17] ^ (T>>>27) ^ (T>>>25) ^ (T>>>22) ^ (T>>>17)) >>> 0);
}
T = (C[17] >>> 27);
C[0] = ((C[0] ^ T ^ ((T<<2) ^ (T<<5) ^ (T<<10)) & 0xffffffff) >>> 0);
C[17] = (C[17] & 0x07ffffff);
for(i=18; i<=35; i++) {
C[i] = 0;
}
result = new Clipperz.Crypto.ECC.BinaryField.Value(C);
//console.log("<<< binaryField.finiteField.(improved)module");
}
return result;
};
}
return Clipperz.Crypto.ECC.StandardCurves._B571;
},
//-----------------------------------------------------------------------------
'_B283': null,
'B283': function() { // f(z) = z^283 + z^12 + z^7 + z^5 + 1
if ((Clipperz.Crypto.ECC.StandardCurves._B283 == null) && (typeof(Clipperz.Crypto.ECC.BinaryField.Curve) != 'undefined')) {
Clipperz.Crypto.ECC.StandardCurves._B283 = new Clipperz.Crypto.ECC.BinaryField.Curve({
modulus: new Clipperz.Crypto.ECC.BinaryField.Value('08000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000010a1', 16),
a: new Clipperz.Crypto.ECC.BinaryField.Value('1', 16),
b: new Clipperz.Crypto.ECC.BinaryField.Value('027b680a c8b8596d a5a4af8a 19a0303f ca97fd76 45309fa2 a581485a f6263e31 3b79a2f5', 16),
G: new Clipperz.Crypto.ECC.BinaryField.Point({
x: new Clipperz.Crypto.ECC.BinaryField.Value('05f93925 8db7dd90 e1934f8c 70b0dfec 2eed25b8 557eac9c 80e2e198 f8cdbecd 86b12053', 16),
y: new Clipperz.Crypto.ECC.BinaryField.Value('03676854 fe24141c b98fe6d4 b20d02b4 516ff702 350eddb0 826779c8 13f0df45 be8112f4', 16)
}),
r: new Clipperz.Crypto.ECC.BinaryField.Value('03ffffff ffffffff ffffffff ffffffff ffffef90 399660fc 938a9016 5b042a7c efadb307', 16),
h: new Clipperz.Crypto.ECC.BinaryField.Value('2', 16)
});
//-----------------------------------------------------------------------------
//
// Guide to Elliptic Curve Cryptography
// Darrel Hankerson, Alfred Menezes, Scott Vanstone
// - Pag: 56, Alorithm 2.43
//
//-----------------------------------------------------------------------------
Clipperz.Crypto.ECC.StandardCurves._B283.finiteField().slowModule = Clipperz.Crypto.ECC.StandardCurves._B283.finiteField().module;
Clipperz.Crypto.ECC.StandardCurves._B283.finiteField().module = function(aValue) {
var result;
if (aValue.bitSize() > 564) {
MochiKit.Logging.logWarning("ECC.StandarCurves.B283.finiteField().module: falling back to default implementation");
result = Clipperz.Crypto.ECC.StandardCurves._B283.finiteField().slowModule(aValue);
} else {
var C, T;
var i;
//console.log(">>> binaryField.finiteField.(improved)module");
C = aValue._value.slice(0);
for (i=17; i>=9; i--) {
T = C[i];
C[i-9] = (((C[i-9] ^ (T<<5) ^ (T<<10) ^ (T<<12) ^ (T<<17)) & 0xffffffff) >>> 0);
C[i-8] = ((C[i-8] ^ (T>>>27) ^ (T>>>22) ^ (T>>>20) ^ (T>>>15)) >>> 0);
}
T = (C[8] >>> 27);
C[0] = ((C[0] ^ T ^ ((T<<5) ^ (T<<7) ^ (T<<12)) & 0xffffffff) >>> 0);
C[8] = (C[8] & 0x07ffffff);
for(i=9; i<=17; i++) {
C[i] = 0;
}
result = new Clipperz.Crypto.ECC.BinaryField.Value(C);
//console.log("<<< binaryField.finiteField.(improved)module");
}
return result;
};
}
return Clipperz.Crypto.ECC.StandardCurves._B283;
},
//==============================================================================
__syntaxFix__: "syntax fix"
});