TerminalImageViewer/src/main/cpp/tiv.cpp

557 lines
16 KiB
C++

#include <iostream>
#include <bitset>
#include <cmath>
#include <map>
#include <string>
#include <vector>
#include <sys/ioctl.h>
#include <experimental/filesystem>
#define cimg_display 0
#include "CImg.h"
//using namespace std;
const int FLAG_FG = 1;
const int FLAG_BG = 2;
const int FLAG_MODE_256 = 4;
const int FLAG_24BIT = 8;
const int FLAG_NOOPT = 16;
const int COLOR_STEP_COUNT = 6;
const int COLOR_STEPS[COLOR_STEP_COUNT] = {0, 0x5f, 0x87, 0xaf, 0xd7, 0xff};
const int GRAYSCALE_STEP_COUNT = 24;
const int GRAYSCALE_STEPS[GRAYSCALE_STEP_COUNT] = {
0x08, 0x12, 0x1c, 0x26, 0x30, 0x3a, 0x44, 0x4e, 0x58, 0x62, 0x6c, 0x76,
0x80, 0x8a, 0x94, 0x9e, 0xa8, 0xb2, 0xbc, 0xc6, 0xd0, 0xda, 0xe4, 0xee};
const unsigned int BITMAPS[] = {
0x00000000, 0x00a0,
// Block graphics
// 0xffff0000, 0x2580, // upper 1/2; redundant with inverse lower 1/2
0x0000000f, 0x2581, // lower 1/8
0x000000ff, 0x2582, // lower 1/4
0x00000fff, 0x2583,
0x0000ffff, 0x2584, // lower 1/2
0x000fffff, 0x2585,
0x00ffffff, 0x2586, // lower 3/4
0x0fffffff, 0x2587,
//0xffffffff, 0x2588, // full; redundant with inverse space
0xeeeeeeee, 0x258a, // left 3/4
0xcccccccc, 0x258c, // left 1/2
0x88888888, 0x258e, // left 1/4
0x0000cccc, 0x2596, // quadrant lower left
0x00003333, 0x2597, // quadrant lower right
0xcccc0000, 0x2598, // quadrant upper left
//0xccccffff, 0x2599, // 3/4 redundant with inverse 1/4
0xcccc3333, 0x259a, // diagonal 1/2
//0xffffcccc, 0x259b, // 3/4 redundant
//0xffff3333, 0x259c, // 3/4 redundant
0x33330000, 0x259d, // quadrant upper right
//0x3333cccc, 0x259e, // 3/4 redundant
//0x3333ffff, 0x259f, // 3/4 redundant
// Line drawing subset: no double lines, no complex light lines
// Simple light lines duplicated because there is no center pixel int the 4x8 matrix
0x000ff000, 0x2501, // Heavy horizontal
0x66666666, 0x2503, // Heavy vertical
0x00077666, 0x250f, // Heavy down and right
0x000ee666, 0x2513, // Heavy down and left
0x66677000, 0x2517, // Heavy up and right
0x666ee000, 0x251b, // Heavy up and left
0x66677666, 0x2523, // Heavy vertical and right
0x666ee666, 0x252b, // Heavy vertical and left
0x000ff666, 0x2533, // Heavy down and horizontal
0x666ff000, 0x253b, // Heavy up and horizontal
0x666ff666, 0x254b, // Heavy cross
0x000cc000, 0x2578, // Bold horizontal left
0x00066000, 0x2579, // Bold horizontal up
0x00033000, 0x257a, // Bold horizontal right
0x00066000, 0x257b, // Bold horizontal down
0x06600660, 0x254f, // Heavy double dash vertical
0x000f0000, 0x2500, // Light horizontal
0x0000f000, 0x2500, //
0x44444444, 0x2502, // Light vertical
0x22222222, 0x2502,
0x000e0000, 0x2574, // light left
0x0000e000, 0x2574, // light left
0x44440000, 0x2575, // light up
0x22220000, 0x2575, // light up
0x00030000, 0x2576, // light right
0x00003000, 0x2576, // light right
0x00004444, 0x2575, // light down
0x00002222, 0x2575, // light down
// Misc technical
0x44444444, 0x23a2, // [ extension
0x22222222, 0x23a5, // ] extension
0x0f000000, 0x23ba, // Horizontal scanline 1
0x00f00000, 0x23bb, // Horizontal scanline 3
0x00000f00, 0x23bc, // Horizontal scanline 7
0x000000f0, 0x23bd, // Horizontal scanline 9
// Geometrical shapes. Tricky because some of them are too wide.
//0x00ffff00, 0x25fe, // Black medium small square
0x00066000, 0x25aa, // Black small square
//0x11224488, 0x2571, // diagonals
//0x88442211, 0x2572,
//0x99666699, 0x2573,
//0x000137f0, 0x25e2, // Triangles
//0x0008cef0, 0x25e3,
//0x000fec80, 0x25e4,
//0x000f7310, 0x25e5,
0, 0 // End marker
};
struct CharData {
int fgColor[3] = {0};
int bgColor[3] = {0};
int codePoint;
};
// Return a CharData struct with the given code point and corresponding averag fg and bg colors.
CharData getCharData(const cimg_library::CImg<unsigned char> & image, int x0, int y0, int codepoint, int pattern) {
CharData result;
result.codePoint = codepoint;
int fg_count = 0;
int bg_count = 0;
unsigned int mask = 0x80000000;
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 4; x++) {
int* avg;
if (pattern & mask) {
avg = result.fgColor;
fg_count++;
} else {
avg = result.bgColor;
bg_count++;
}
for (int i = 0; i < 3; i++) {
avg[i] += image(x0 + x, y0 + y, 0, i);
}
mask = mask >> 1;
}
}
// Calculate the average color value for each bucket
for (int i = 0; i < 3; i++) {
if (bg_count != 0) {
result.bgColor[i] /= bg_count;
}
if (fg_count != 0) {
result.fgColor[i] /= fg_count;
}
}
return result;
}
// Find the best character and colors for a 4x8 part of the image at the given position
CharData getCharData(const cimg_library::CImg<unsigned char> & image, int x0, int y0) {
int min[3] = {255, 255, 255};
int max[3] = {0};
std::map<long,int> count_per_color;
// Determine the minimum and maximum value for each color channel
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 4; x++) {
long color = 0;
for (int i = 0; i < 3; i++) {
int d = image(x0 + x, y0 + y, 0, i);
min[i] = std::min(min[i], d);
max[i] = std::max(max[i], d);
color = (color << 8) | d;
}
count_per_color[color]++;
}
}
std::multimap<int,long> color_per_count;
for (auto i = count_per_color.begin(); i != count_per_color.end(); ++i) {
color_per_count.insert(std::pair<int,long>(i->second, i->first));
}
auto iter = color_per_count.rbegin();
int count2 = iter->first;
long max_count_color_1 = iter->second;
long max_count_color_2 = max_count_color_1;
if ((++iter) != color_per_count.rend()) {
count2 += iter->first;
max_count_color_2 = iter->second;
}
unsigned int bits = 0;
bool direct = count2 > (8*4) / 2;
if (direct) {
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 4; x++) {
bits = bits << 1;
int d1 = 0;
int d2 = 0;
for (int i = 0; i < 3; i++) {
int shift = 16 - 8 * i;
int c1 = (max_count_color_1 >> shift) & 255;
int c2 = (max_count_color_2 >> shift) & 255;
int c = image(x0 + x, y0 + y, 0, i);
d1 += (c1-c) * (c1-c);
d2 += (c2-c) * (c2-c);
}
if (d1 > d2) {
bits |= 1;
}
}
}
} else {
// Determine the color channel with the greatest range.
int splitIndex = 0;
int bestSplit = 0;
for (int i = 0; i < 3; i++) {
if (max[i] - min[i] > bestSplit) {
bestSplit = max[i] - min[i];
splitIndex = i;
}
}
// We just split at the middle of the interval instead of computing the median.
int splitValue = min[splitIndex] + bestSplit / 2;
// Compute a bitmap using the given split and sum the color values for both buckets.
for (int y = 0; y < 8; y++) {
for (int x = 0; x < 4; x++) {
bits = bits << 1;
if (image(x0 + x, y0 + y, 0, splitIndex) > splitValue) {
bits |= 1;
}
}
}
}
// Find the best bitmap match by counting the bits that don't match,
// including the inverted bitmaps.
int best_diff = 8;
unsigned int best_pattern = 0x0000ffff;
int codepoint = 0x2584;
bool inverted = false;
for (int i = 0; BITMAPS[i + 1] != 0; i += 2) {
unsigned int pattern = BITMAPS[i];
for (int j = 0; j < 2; j++) {
int diff = (std::bitset<32>(pattern ^ bits)).count();
if (diff < best_diff) {
best_pattern = BITMAPS[i]; // pattern might be inverted.
codepoint = BITMAPS[i + 1];
best_diff = diff;
inverted = best_pattern != pattern;
}
pattern = ~pattern;
}
}
if (direct) {
CharData result;
if (inverted) {
long tmp = max_count_color_1;
max_count_color_1 = max_count_color_2;
max_count_color_2 = tmp;
}
for (int i = 0; i < 3; i++) {
int shift = 16 - 8 * i;
result.fgColor[i] = (max_count_color_2 >> shift) & 255;
result.bgColor[i] = (max_count_color_1 >> shift) & 255;
result.codePoint = codepoint;
}
return result;
}
return getCharData(image, x0, y0, codepoint, best_pattern);
}
int clamp_byte(int value) {
return value < 0 ? 0 : (value > 255 ? 255 : value);
}
double sqr(double n) {
return n*n;
}
int best_index(int value, const int data[], int count) {
int best_diff = std::abs(data[0] - value);
int result = 0;
for (int i = 1; i < count; i++) {
if (std::abs(data[i] - value) < best_diff) {
result = i;
}
}
return result;
}
void emit_color(int flags, int r, int g, int b) {
r = clamp_byte(r);
g = clamp_byte(g);
b = clamp_byte(b);
bool bg = (flags & FLAG_BG) != 0;
if ((flags & FLAG_MODE_256) == 0) {
std::cout << (bg ? "\x1b[48;2;" : "\x1b[38;2;") << r << ';' << g << ';' << b << 'm';
return;
}
int ri = best_index(r, COLOR_STEPS, COLOR_STEP_COUNT);
int gi = best_index(g, COLOR_STEPS, COLOR_STEP_COUNT);
int bi = best_index(b, COLOR_STEPS, COLOR_STEP_COUNT);
int rq = COLOR_STEPS[ri];
int gq = COLOR_STEPS[gi];
int bq = COLOR_STEPS[bi];
int gray = static_cast<int>(std::round(r * 0.2989f + g * 0.5870f + b * 0.1140f));
int gri = best_index(gray, GRAYSCALE_STEPS, GRAYSCALE_STEP_COUNT);
int grq = GRAYSCALE_STEPS[gri];
int color_index;
if (0.3 * sqr(rq-r) + 0.59 * sqr(gq-g) + 0.11 * sqr(bq-b) <
0.3 * sqr(grq-r) + 0.59 * sqr(grq-g) + 0.11 * sqr(grq-b)) {
color_index = 16 + 36 * ri + 6 * gi + bi;
} else {
color_index = 232 + gri; // 1..24 -> 232..255
}
std::cout << (bg ? "\x1B[48;5;" : "\u001B[38;5;") << color_index << "m";
}
void emitCodepoint(int codepoint) {
if (codepoint < 128) {
std::cout << (char) codepoint;
} else if (codepoint < 0x7ff) {
std::cout << (char) (0xc0 | (codepoint >> 6));
std::cout << (char) (0x80 | (codepoint & 0x3f));
} else if (codepoint < 0xffff) {
std::cout << (char) (0xe0 | (codepoint >> 12));
std::cout << (char) (0x80 | ((codepoint >> 6) & 0x3f));
std::cout << (char) (0x80 | (codepoint & 0x3f));
} else if (codepoint < 0x10ffff) {
std::cout << (char) (0xf0 | (codepoint >> 18));
std::cout << (char) (0x80 | ((codepoint >> 12) & 0x3f));
std::cout << (char) (0x80 | ((codepoint >> 6) & 0x3f));
std::cout << (char) (0x80 | (codepoint & 0x3f));
} else {
std::cerr << "ERROR";
}
}
void emit_image(const cimg_library::CImg<unsigned char> & image, int flags) {
for (int y = 0; y <= image.height() - 8; y += 8) {
for (int x = 0; x <= image.width() - 4; x += 4) {
CharData charData = flags & FLAG_NOOPT
? getCharData(image, x, y, 0x2584, 0x0000ffff)
: getCharData(image, x, y);
emit_color(flags | FLAG_BG, charData.bgColor[0], charData.bgColor[1], charData.bgColor[2]);
emit_color(flags | FLAG_FG, charData.fgColor[0], charData.fgColor[1], charData.fgColor[2]);
emitCodepoint(charData.codePoint);
}
std::cout << "\x1b[0m" << std::endl;
}
}
struct size {
size(unsigned int in_width, unsigned int in_height) :
width(in_width), height(in_height) {
}
size(cimg_library::CImg<unsigned int> img) :
width(img.width()), height(img.height()) {
}
unsigned int width;
unsigned int height;
size scaled(double scale) {
return size(width*scale, height*scale);
}
size fitted_within(size container) {
double scale = std::min(container.width / (double) width, container.height / (double) height);
return scaled(scale);
}
};
std::ostream& operator<<(std::ostream& stream, size sz) {
stream << sz.width << "x" << sz.height;
return stream;
}
void emit_usage() {
std::cerr << "Terminal Image Viewer" << std::endl << std::endl;
std::cerr << "usage: tiv [options] <image> [<image>...]" << std::endl << std::endl;
std::cerr << " -0 : No block character adjustment, always use top half block char." << std::endl;
std::cerr << " -256 : Use 256 color mode." << std::endl;
std::cerr << " -c <num> : Number of thumbnail columns in 'dir' mode (3)." << std::endl;
std::cerr << " -d : Force 'dir' mode. Automatially selected for more than one input." << std::endl;
std::cerr << " -f : Force 'full' mode. Automatically selected for one input." << std::endl;
std::cerr << " -help : Display this help text." << std::endl;
std::cerr << " -h <num> : Set the maximum height to <num> lines." << std::endl;
std::cerr << " -w <num> : Set the maximum width to <num> characters." << std::endl << std::endl;
}
enum Mode {AUTO, THUMBNAILS, FULL_SIZE};
/* Wrapper around CImg<T>(const char*) to ensure the result has 3 channels as RGB
*/
cimg_library::CImg<unsigned char> load_rgb_CImg(const char * const filename) {
cimg_library::CImg<unsigned char> image(filename);
if(image.spectrum() == 1) {
// Greyscale. Just copy greyscale data to all channels
cimg_library::CImg<unsigned char> rgb_image(image.width(), image.height(), image.depth(), 3);
for(unsigned int chn = 0; chn < 3; chn++) {
rgb_image.draw_image(0, 0, 0,chn, image);
}
return rgb_image;
}
return image;
}
int main(int argc, char* argv[]) {
int maxWidth = 80;
int maxHeight = 24;
bool sizeDetectionSuccessful = true;
struct winsize w;
int ioStatus = ioctl(STDOUT_FILENO, TIOCGWINSZ, &w);
// If redirecting STDOUT to one file ( col or row == 0, or the previous ioctl call's failed )
if (ioStatus != 0 || (w.ws_col | w.ws_row) == 0) {
ioStatus = ioctl(STDIN_FILENO, TIOCGWINSZ, &w);
if (ioStatus != 0 || (w.ws_col | w.ws_row) == 0) {
std::cerr << "Warning: failed to determine most reasonable size, defaulting to 80x24" << std::endl;
sizeDetectionSuccessful = false;
}
}
if (sizeDetectionSuccessful)
{
maxWidth = w.ws_col * 4;
maxHeight = w.ws_row * 8;
}
int flags = 0;
Mode mode = AUTO;
int columns = 3;
std::vector<std::string> file_names;
int error = 0;
if (argc <= 1) {
emit_usage();
return 0;
}
for (int i = 1; i < argc; i++) {
std::string arg(argv[i]);
if (arg == "-0") {
flags |= FLAG_NOOPT;
} else if (arg == "-c") {
columns = std::stoi(argv[++i]);
} else if (arg == "-d") {
mode = THUMBNAILS;
} else if (arg == "-f") {
mode = FULL_SIZE;
} else if (arg == "-w") {
maxWidth = 4 * std::stoi(argv[++i]);
} else if (arg == "-h") {
maxHeight = 8 * std::stoi(argv[++i]);
} else if (arg == "-256") {
flags |= FLAG_MODE_256;
} else if (arg == "--help" || arg == "-help") {
emit_usage();
} else if (arg[0] == '-') {
std::cerr << "Unrecognized argument: " << arg << std::endl;
} else {
if (std::experimental::filesystem::is_directory(arg)) {
for (auto & p : std::experimental::filesystem::directory_iterator(arg)) {
if (std::experimental::filesystem::is_regular_file(p.path())) {
file_names.push_back(p.path().string());
}
}
} else {
file_names.push_back(arg);
}
}
}
if (mode == FULL_SIZE || (mode == AUTO && file_names.size() == 1)) {
for (unsigned int i = 0; i < file_names.size(); i++) {
try {
cimg_library::CImg<unsigned char> image = load_rgb_CImg(file_names[i].c_str());
if (image.width() > maxWidth || image.height() > maxHeight) {
size new_size = size(image).fitted_within(size(maxWidth,maxHeight));
image.resize(new_size.width, new_size.height, -100, -100, 5);
}
emit_image(image, flags);
} catch(cimg_library::CImgIOException & e) {
error = 1;
std::cerr << "File format is not recognized for '" << file_names[i] << "'" << std::endl;
}
}
} else {
// Thumbnail mode
unsigned int index = 0;
int cw = (((maxWidth / 4) - 2 * (columns - 1)) / columns);
int tw = cw * 4;
cimg_library::CImg<unsigned char> image(tw * columns + 2 * 4 * (columns - 1), tw, 1, 3);
size maxThumbSize(tw, tw);
while (index < file_names.size()) {
image.fill(0);
int count = 0;
std::string sb;
while (index < file_names.size() && count < columns) {
std::string name = file_names[index++];
try {
cimg_library::CImg<unsigned char> original = load_rgb_CImg(name.c_str());
auto cut = name.find_last_of("/");
sb += cut == std::string::npos ? name : name.substr(cut + 1);
size newSize = size(original).fitted_within(maxThumbSize);
original.resize(newSize.width, newSize.height, 1, -100, 5);
image.draw_image(count * (tw + 8) + (tw - newSize.width) / 2, (tw - newSize.height) / 2, 0, 0, original);
count++;
unsigned int sl = count * (cw + 2);
sb.resize(sl - 2, ' ');
sb += " ";
} catch (std::exception & e) {
// Probably no image; ignore.
}
}
if (count) emit_image(image, flags);
std::cout << sb << std::endl << std::endl;
}
}
return error;
}